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Abstract 

 
The ))(exp( ξΦ− -expansion method is an efficient method for obtaining exact traveling wave 

solutions of nonlinear evolution equations. In this paper, the ))(exp( ξΦ− -expansion method 

is applied to construct exact traveling wave solutions of the simplified MCH equation. The 

traveling wave solutions are expressed in terms of the hyperbolic functions, the trigonometric 

functions and the rational functions. It is shown that the method is straightforward and effective 

mathematical tool for solving nonlinear evolution equations in mathematical physics and 

engineering.  

 

Keywords: The ))(exp( ξΦ− -expansion method, the simplified MCH equation, traveling wave 

solutions, solitary wave solutions. 

 
PACS: 05.45.Yv, 02.30.Jr, 02.30.Ik. 

 

1 Introduction 

 
Many complex real world problems in nature are due to nonlinear phenomena. Nonlinear 

processes are one of the biggest challenges and not easy to control because the nonlinear 
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characteristic of the system abruptly changes due to some small changes of valid parameters 

including time. Thus the issue becomes more complicated and hence needs ultimate solution. 

Therefore, the studies of exact solutions of nonlinear evolution equations (NLEEs) play a crucial 

role to understand the internal mechanism of nonlinear phenomena. Advance nonlinear techniques 

are significant to solve inherent nonlinear problems, particularly those involving differential 

equations, dynamical systems and related areas. In recent years, both the mathematicians and 

physicists have made significant improvement in finding the exact solutions of NLEEs. They 

establish many effective and powerful methods to handle the NLEEs. For example, the Jacobi 

elliptic function expansion method [1,2], the Backlund transformation method [3], the F-

expansion method [4, 5], the Darboux transformation method [6], the inverse scattering transform 

[7], the Adomian decomposition method [8, 9], the complex hyperbolic function method [10, 11], 

the homogeneous balance method [12-14], the )/( GG′ -expansion method [15-26], the modified 

simple equation method [27], the auxiliary equation method[28,29], the exp-functions method 

[30], the ))(exp( ηϕ− -expansion method [31] and so on. Many researchers have studied CH and 

MCH equations applying different methods [32-36] in recent years because of its importance of 

applications in several areas of interest.  

 

The objective of this article is to apply the ))(exp( ξϕ− -expansion method to construct the exact 

solutions for nonlinear evolution equations in mathematical physics via the simplified MCH 

equation. 

 

The rest of the paper is organized as follows: In Section 2, we give the description of the 

))(exp( ξϕ− -expansion method. In Section 3, we apply this method to the simplified MCH 

equation and graphical representations of the solutions. Conclusions are given in the last section. 

 

2 Description of the ))(exp( ξΦ− -expansion Method 

 
Let us consider a general nonlinear PDE in the form 

 

),,,,,,( Kxtttxxxt uuuuuuF ,        (1) 

 

where ),( txuu = is an unknown function, F is a polynomial in ),( txu and its derivatives in 

which highest order derivatives and nonlinear terms are involved and the subscripts stand for the 

partial  derivatives. In the following, we give the main steps of this method: 

 

Step 1: We combine the real variables x  and t  by a complex variable ξ  

 

)(),( ξutxu = ,  tVx ±=ξ ,       (2) 

 

where V  is the speed of the traveling wave. The traveling wave transformation (2) converts Eq. 

(1) into an ordinary differential equation (ODE) for )(ξuu = : 

 

),,,,( Luuuu ′′′′′′ℜ ,                              (3) 
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where ℜ  is a polynomial of u  and its derivatives and  the superscripts indicate the ordinary 

derivatives with respect toξ . 

 

Step 2. Suppose the traveling wave solution of Eq. (3) can be expressed as follows: 

 

,)))((exp()(
0

iN

i

iu ∑
=

Φ−= ξαξ
                              

        (4) 

 

where )0( Nii ≤≤α  are constants to be determined, such that 0≠Nα  and )(ξΦ=Φ   

satisfies the following ordinary differential equation: 

 

  ,))(exp())(exp()( λξµξξ +Φ+Φ−=Φ′      (5) 

 

Eq. (5) gives the following solutions: 

 

Family 1: When ,0≠µ  ,042 >− µλ  

 

 )
2

))(
2

)4(
tanh()4(

ln()(

2

2

µ

λη
µλ

µλ
η

−+
−

−−
=Φ

E

      (6) 

 

Family 2: When ,0≠µ  ,042 <− µλ  
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Family 3: When ,0=µ  ,0≠λ  and ,042 >− µλ  
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Family 4: When ,0≠µ  ,0≠λ  and ,042 =− µλ  
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Family 5: When ,0=µ  ,0=λ  and ,042 =− µλ  
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 )ln()( E+=Φ ξξ
                   

                                      (10) 

 

µλα ,,,, VN LL are constants to be determined latter, ,0≠Nα the positive integer N  can be 

determined by considering the homogeneous balance between the highest order derivatives and 

the nonlinear terms appearing in Eq. (3). 

 

Step 3: We substitute Eq. (4) into Eq. (3) and then we account the function ))(exp( ξΦ− . As a 

result of this substitution, we get a polynomial of ))(exp( ξΦ− . We equate all the coefficients of 

same power of ))(exp( ξΦ−  to zero. This procedure yields a system of algebraic equations 

whichever can be solved to find µλα ,,,, VN LL . Substituting the values of 

µλα ,,,, VN LL  into Eq. (4) along with general solutions of Eq. (5) completes the 

determination of the solution of Eq. (1). 

 

3 The Simplified MCH Equation 
 
Now we will bring to bear the ))(exp( ηϕ− -expansion method to find exact solutions and then 

the solitary wave solutions of the simplified MCH equation in the form, 

 

02 2 =+−+ xxxtxt uuukuu β . where  .0, >ℜ∈ βk                             (11) 

 

Details of CH and MCH equations can be found in references [32-36]. 

 

Now, we use the traveling wave transformation Eq. (2) into Eq. (11), which yields 

 

02 2 =′+′′′+′+′− uuuVukuV β .     (12) 

 

where the superscripts stand for the derivatives with respect toξ . 

 

Integrating Eq. (12) once with respect to ξ  yields: 

 

0
3

)2(
3 =++′′+− PuuVuVk

β
.                                        (13) 

 

where P  is an integral constant that could be determined later. 

 

Taking the homogeneous balance between 
3

u  and u ′′  in Eq. (13), we obtain 1=N . Therefore, 

the solution of Eq. (13) is of the form 

 

 ))),((exp()( 10 ξααη Φ−+=u        (14) 
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where 
10 ,αα  are constants to be determined such that ,0≠Nα  while µλ,  are arbitrary 

constants.  

 

Substituting Eq. (14) into Eq. (13) and then equating the coefficients of ))(exp( ξΦ−  to zero, 

we get 

 

,0
3
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2

3
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      (15) 
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Solving the Eq. (15)-Eq. (18) yields 

 

,0=P ,
42
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where  µλ, k,β  are arbitrary constants. 

 

Now substituting the values of 
1,, αα oV  into Eq. (14) yields 

 

))),((exp(21(
)42(
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where  t
k

x )
42

4
(
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Now substituting Eq. (6) - Eq. (10) into Eq. (19) respectively, we get the following five traveling 

wave solutions of the simplified MCH equation. 

 

When ,0≠µ  ,042 >− µλ
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where t
k

x )
42

4
(

2 µλ
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−=  and E  is an arbitrary constant. 

 

When ,0≠µ  ,042 <− µλ
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When ,0=µ  ,0≠λ  and ,042 >− µλ
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When ,0≠µ  ,0≠λ  and ,042 =− µλ  
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where ktx 2−=ξ  and E  is an arbitrary constant. 

 

When ,0=µ  ,0=λ  and ,042 =− µλ  
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where ktx 2−=ξ  and E  is an arbitrary constant.  
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4 Graphical Representation of the Solutions 
 

The graphical illustrations of the solutions are given below in the figures with the aid of Maple. 
 

 

 

Fig. 1. Kink wave solution )(1 ξu  when 

,1=β  ,2=k  ,1=µ  ,3=λ  1=E  and

10,10 ≤≤− tx  

 

Fig. 2. Periodic solution )(2 ξu  

when ,1=β  ,2=k  ,3=µ  ,1=λ  

1=E and 1,1 ≤≤− tx
 

 
 

 
 

Fig. 3. Singular soliton solution )(3 ξu  

when ,1=β  ,2=k  ,0=µ  ,2=λ  1=E  and

10,10 ≤≤− tx  
 

Fig. 4. Singular Kink wave solution 

)(4 ηu  when ,1=β  ,2=k  ,1=µ  

,2=λ  1=E  and 10,10 ≤≤− tx  
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Fig. 5. Singular Kink wave solution )(5 ηu  when ,1=β  ,2=k  ,0=µ  ,0=λ  1=E  

and 10,10 ≤≤− tx  

 

5 Conclusion 

 
In this paper, the ))(exp( ξΦ− -expansion method is applied successfully for solving the 

simplified MCH equation. The procedure is simple, direct and constructive without the help of a 

computer algebra system. The results show that this method is efficient in finding the exact 

traveling wave solutions of nonlinear differential equations. 
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