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Abstract 
The dependence of the polarization P in Hf1-xZrxO2 nanoparticles on electric 
field, dopant concentration x, size and temperature are studied using the 
transverse Ising model and the Green’s function method. Pure ZrO2 shows at 
high electric fields an antiferroelectric behavior. Pure HfO2 is a linear dielec-
tric in the monoclinic phase. With increasing ZrO2 content the ( )P E  of 
HZO shows a ferroelectric behavior. The composition dependence x of the 
remanent polarization ( )rP x  has a maximum for x = 0.5. For x = 0, pure 
HfO2, and x = 1, pure ZrO2, 0rP = . P increases with decreasing HZO nano-
particle size. The influence of Al and La doping on rP  in HfO2 nanoparticles 
is also studied. The exhibiting of the ferroelectricity in ion doped HfO2 is due 
to a phase transformation and to an internal strain effect. The observed re-
sults are in good qualitative agreement with the experimental data. 
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1. Introduction 

ZrO2 is a wide-band insulating material with a high dielectric constant. With in-
creasing temperature in ZrO2 exist monoclinic, tetragonal, orthorhombic and 
cubic phases. Antiferroelectric (AFE)-like double-hysteresis loops are observed 
in ZrO2 thin films [1] [2] where the structure is tetragonal at room temperature 
[3] [4] [5] [6]. Using density functional calculations Reyes-Lillo et al. [7] have 
studied the experimentally reported field induced phase transition in ZrO2 thin 
film [1] [2] which corresponds to an intrinsic effect. 
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Furthermore, ferroelectricity was found in HfO2 thin films doped with Zr 
(HZO) [1] [4] [8] [9] [10] [11] [12] as well as with Si, Y, Al, Gd, La [13]-[20]. It 
must be noted that pure HfO2 and ZrO2 are not ferroelectric. HfO2 exists with 
increasing temperature in monoclinic, tetragonal and cubic phases [21]. In na-
no-materials the tetragonal phase extends to lower temperatures [5]. For differ-
ent Zr content x the HZO thin films show dielectric (x = 0), ferroelectric (for 
example x = 0.5) and AFE (for example x = 0.7) properties, which are due to the 
involvement of monoclinic (m-phase, P21/c-dielectric), orthorhombic (o-phase, 
Pca21-ferroelectric) and tetragonal (t-phase, P42/nmc-AFE) phases depending on 
the Hf:Zr ratio [1]. Wei et al. [9] reported that the polarization P in HZO in-
creases with decreasing nanoparticle (NP) size. In HZO thin films P also in-
creases significantly when the film thickness decreases [22]. 

Below a critical size of 30 nm pure ZrO2 is stabilized in the tetragonal phase at 
room temperature which is considered as a crystallite size effect [23]. There are 
also reports for critical sizes for the tetragonal to monoclinic transformation 
between 15 - 20 nm [24] [25] [26]. The tetragonal phase of HfO2 is stabilized for 
d < 3.6 - 3.8 nm [27]. 

The phase stability and the ferroelectricity of orthorhombic HZO ferroelectric 
material are theoretically investigated by Chen et al. [28] with density functional 
theory (DFT) computations. Oxygen defect impacts on ferroelectricity in HZO 
are studied using first-principles calculations by Wei et al. [29]. Also with the 
DFT Materlik et al. [30] have studied the ferroelectric phase of HfO2, ZrO2 and 
HZO. Batra et al. [31] revealed later that the results of Ref. [30] might not be 
correct. The experimentally observed stress in HZO films is tensile [32] whereas 
Batra et al. [31] reported a compressive stress. 

The physical origin of the AFE hysteresis in ZrO2 NPs and the ferroelectricity 
in HZO and Al, La doped HfO2 NPs is still under debate. The aim of the present 
paper is to investigate theoretically these problems using a microscopic model 
and the Green’s function technique. 

2. Model and Green’s Function 

The properties of Zr doped HfO2, Hf1−xZrxO2, NPs can be described by the 
transverse Ising model [33]:  

1 .
2

x z z z
i i ij i j i j i

i ij i
H x S J x x S S E Sαβ

α α α α β α β α
α αβ

µ= − Ω − −∑ ∑ ∑          (1) 

The pseudo-spin operator z
iS  characterizes the two positions of the ferroe-

lectric unit at the lattice point i. ijJ  is the pseudo-spin interaction between the 
pseudo-spins at sites i and j which is positive or negative in the ferroelectric or 
AFE case, respectively. The dynamics of the model with strength Ω  is deter-
mined by the operator xS . E is an external electric field. Here ,α β  mean Zr 
(or Al, La) or Hf. 1Zr

ix = , 0Hf
ix =  for pure ZrO2, and 0Zr

ix = , 1Hf
ix =  for 

pure HfO2. Thus, 1Zr Hf
i ix x+ = . αΩ  has two values— ZrΩ  and HfΩ . The in-

teraction term ijJαβ  has three different values— Zr Zr
ijJ − , Hf Hf

ijJ −  and Zr Hf
ijJ − . 
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The Hamiltonian (1) can be written in explicit form as ( Zrx x≡ ):  

( )

( )( ) ( )

11
2

1 1 1 1 .
2

Zr xZr Hf xHf Zr Zr zZr zZr
i i i i ij i j i j

i i ij

Hf Hf zHf zHf Zr Hf zZr zHf
ij i j i j ij i j i j

ij ij

H S x S x J S S x x

J S S x x J S S x x

−

− −

= −Ω −Ω − −

− − − − −

∑ ∑ ∑

∑ ∑
  (2) 

We assume that  

( ) ( ); 1 1 ,zZr zZr zHf zHf
i i i i i iS x S x S x S x≈ − ≈ −           (3) 

where ix x= . The factor x gives the concentration of the Zr ions which subs-
titute the Hf ions, whereas ( )1 x−  is the concentration of the Hf ions. 

The retarded Green’s function is defined as:  

( ) ( ) ( ) , .ij i jG t i t B t Bθ + = −                      (4) 

The operator iB  stands for the set Zr
iS + , Zr

iS − , Hf
iS + , Hf

iS − , where S − , 
S +  are Pauli operators (S = 1/2, zS S S S− += − ). 

The polarization P of a HZO NP is obtained as:  

( )1 tanh .
2 n B

n
P k T

N
= ∑                       (5) 

The mixed transverse pseudo-spin-wave excitations ij  in a given shell n are 
calculated from the poles of the Green’s function (4) using the method proposed 
by Tserkovnikov [34]:  

( ) ( )211 22 11 22 12 211 1 ,
2 4ij ij ij ij ij ij ij= + ± − +                      (6) 

( )
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δ

δ
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− +
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221 tanh ,
4 2

ijzHf
i

j ij B

S
N k T

=
′∑


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121 tanh ,
4 2

ijZr Zr
i i

ij B

S S
k T

ε
ε

− += =
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211 tanh ,
4 2

ijHf Hf
i i

ij B

S S
k T

− += =



 

where N ′  is the number of lattice sites. 

3. Numerical Results and Discussion 

Our NP has an icosahedral symmetry. A certain Hf-spin is fixed in the center of 
the particle and all other spins are included into shells n. n = 1 denotes the cen-
tral spin and n = N represents the surface shell. Strain effects on the surface of 
the NP change the number of next neighbors on the surface and reduce the 
symmetry. Therefore the pseudo-spin interaction constants can take different 
values on the surface and in the bulk, denoted with the index “s” and “b”, re-
spectively. Moreover, J is proportional to the inverse of the distance between two 
nearest spins, i.e. of the lattice parameters. 

In order to clarify the AFE behavior in ZrO2 we will firstly consider the elec-
tric field dependence of the polarization in the tetragonal phase of a ZrO2 NP 
with N = 3 shells for T = 300 K. Materlik et al. [30] showed that AFE behavior of 
pure ZrO2 thin films is observed after stabilization of the tetragonal phase for d < 
35 nm. Using the lattice parameters for ZrO2 from Ref. [30] in the tetragonal 
phase a = 5.06, b = 5.18, c = 5.06 (Å) we obtain the following model parameters: 

535 KJ = − , 20 KΩ = , 1.6s bJ J= , 0.8s bΩ = Ω . The tetragonal structure is 
PbZrO3 (PZO)-like AFE one, the electric dipoles are aligned antiparallel to their 
nearest neighbors—analogous to the magnetic moments in antiferromagnetic 
materials, therefore, we chose 0J < . The results are presented in Figure 1, 
curve 1. This AFE behaviour is in agreement with the experimental data of Ref. 
[2] [7] [30] [35] [36]. The polar AFE phase exists under a certain magnitude of 
the external electric field. When T increases, above a critical temperature critT  
only paraelectric properties can be observed. So, we can conclude, that one ex-
planation of the origin of the AFE-ty in ZrO2 NPs is a phase transformation 
from a tetragonal to an orthorhombic phase induced by an external electric field 
which is an intrinsic behavior. This is confirmed by the ab-initio study of 
Reyes-Lillo et al. [7]. 

Now we will study the electric behaviour for different electric field, tempera-
ture, crystal phase and size of Hf1-xZrxO2 NPs. By doping of ions with different 
radius appear different strains which give rise to additive changes (increasing or 
decreasing) of the pseudo-spin interaction constant ( )ij i jJ J r r= −  in the de-
fect sizes (denoted as dJ ) compared to the undoped samples. The radius of the 
tetravalent Zr ion (86 pm) is a little larger than that of the Hf ion (85 pm), i.e. 
there is a small tensile strain ( d bJ J< ), in agreement with the experimental data  
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Figure 1. (Color online) Electric field dependence of the 
polarization in Hf1-xZrxO2 NPs for N = 3 shells, 1.6s bJ J= , 

0.8s bΩ = Ω  and different x values: (1) 1; (2) 0.5; (3) 0. 

 
of Shiraishi et al. [32] for HZO thin films, whereas Batra et al. [31] reported a 
compressive stress. 

The electric field dependence of the polarization in Hf0.5Zr0.5O2 NPs is shown 
in Figure 1, curves 1-3. ZrO2 and HfO2 have almost equivalent crystal phases, 
with almost identical lattice parameters. It is seen that pure HfO2 (Figure 1, 
curve 3) in the monoclinic phase is a linear dielectric with no notable nonlinear 
response of the polarization curve. As the ZrO2 content increases, the ( )P E  
curve reaches its maximum value for doping concentration x = 0.5 (Figure 1, 
curve 2). ZrO2 displays an AFE-behavior at high fields, where the polarization 
response becomes non-linear with hysteresis (Figure 1, curve 1). In the 
non-polar state where the polarization P = 0 we obtain a linear dependence in 
the polarization ( )P E  below the Curie-Weiss temperature 0T  (curve 1). 
Above 0T  with increasing temperature, when the temperature is between 0T  
and CT  (the ferroelectric phase transition Curie temperature), 0 CT T T< < , 
there is a polar state, and the hysteresis loop is similar to the ferroelectric one 
(curve 2, x = 0.5). In this temperature region the crystal is in the orthorhombic 
phase where the electric dipoles are aligned parallel to their nearest neighbors, i.e. 

0J > . Using the lattice parameters for HZO from [30] a = 5.06, b = 5.14, c = 
5.27 Å we have calculated the following model parameters: 505 KdJ = , 

20 KdΩ = . We assume 1.6s bJ J= , 0.8s bΩ = Ω . The begin of the polar fer-
roelectric state corresponds to the monoclinic to orthorhombic phase transfor-
mation ( 0J > ). A similar ferroelectric hysteresis curve is obtained also for x = 
0.4. This ferroelectric behaviour of HZO nanostructures is reported in Ref. [1] [9] 
[10] [28] [35] [37] [38]. Above CT  in the temperature interval 1CT T T< <  the 
polar phase becomes to be metastable. Because of this the hysteresis curve shows 
a ferroelectric behavior. For 1 NT T T< <  (the AFE phase transition tempera-
ture), we observe the AFE-like state ( 0J < ) (Figure 1, curve 1), typical for pure 
ZrO2 NP (x = 1), the crystal phase is tetragonal. The polar phase cannot be in-
duced when the temperature T is around NT  even under an external electric 
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field. For temperatures higher than the AFE transition temperature NT  in the 
cubic phase remain only paraelectric properties. The monoclinic phase decreases 
with increasing the ZrO2 content. It can be seen from Figure 1 that the rema-
nent polarization rP  is zero for pure HfO2 and ZrO2. rP  reaches at doping 
concentration x = 0.5 its maximum value. 

In Figure 2 is shown the composition dependence x of the remanent polariza-
tion rP  in HZO NPs. For x = 0, for pure HfO2, 0rP = . With increasing of x 

rP  increases, reaches at x = 0.5 its maximum value and then in pure ZrO2, x = 1, 

rP  is again zero. The experimentally reported maximum value of the remanent 
polarization rP  is in the interval x = 0.5 - 0.6 [1] [37] [38] [39]. Mueller et al. [1] 
have shown that for x = 0.5 the ferroelectric phase is stable between 100 - 400 K. 
In this temperature interval HZO thin films for x = 0.7 show a transition to a 
double-loop hysteresis, whereas pure ZrO2 thin films remain in this double-loop 
hysteresis starting from low temperatures. 

To completely explain the ferroelectric-phase stability in HZO NPs, we want 
to focus now on the size dependence of the polarization P in HZO NPs which is 
demonstrated in Figure 3. It must be noted, that the distance between the shells 
is ≈10 Å, i.e. we consider NPs with N = 2 - 10, i.e. with size of 2 - 50 nm. It can 
be seen from Figure 3 that P increases with decreasing NP size, i.e. the ferroe-
lectric properties disappear in large NPs, thick films and bulk materials, in 
agreement with the experimental data [9] [18] [40] [41]. This behaviour shows 
that the m-phase (non-ferroelectric), which is absent or very rarely found in the 
smallest NPs, increases with increasing size whereas the ferroelectric rhombo-
hedral phase is stabilized by the existing surface strain. To conclude, we show 
that strain can be used in very small NPs of HZO to induce a ferroelectric phase, 
with a large polarization P and remanent polarization rP . Park et al. [18] re-
ported also that the o-phase increases with decrease thickness in HZO film. Cli-
ma et al. [42] show that oxygen vacancies can reduce drastically the polarization 
reversal barriers. 

Finally, we will consider the effect of different ion doping on the electric 
properties of HfO2 NPs. Variations of Al and La doping concentration influences 
the crystallographic structure of the NP and therefore the polarization. The in-
sertion of a 3+ (Al) or 4+ (La) cation in the HfO2 lattice leads to the appearance 
of oxygen vacancies to keep the charge balance. The radius of the Al ion (67.5 
pm) is smaller compared to the ionic radius of the Hf ion (85 pm) (i.e. in our 
model we have d bJ J> ). Figure 4 shows the remanent polarization rP  of the 
HfO2 NP as a function of the Al-concentration (Figure 4, curve 1). The rP  
value increases firstly by increasing the Al concentration starting at x ≈ 0.01. The 
maximum ferroelectric polarization is reached at x = 0.03 Al, followed by an 
AFE region between x = 0.04 - 0.06 Al. At higher Al-concentrations the doped 
HfO2 NP behaves as a paraelectric material. Mueller et al. [16] showed that the 
ferroelectricity is related to the non-centrosymmetric orthorhombic phase which 
is stabilized at low Al doping concentration. 
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Figure 2. The remanent polarization of Hf1-x ZrxO2 
NPs for 1.6s bJ J= , 0.8s bΩ = Ω , 0.8d bJ J= , 

1.2d bΩ = Ω , and different Zr conzentration x. 
 

 

Figure 3. Size dependence of the polarization of HZO 
NPs for 1.6s bJ J= , 0.8s bΩ = Ω . 

 

 

Figure 4. Doping concentration dependence of the 
remanent polarization rP  of a HfO2 NP for doping 
with: (1) Al ( 605 KdJ = ); (2) La ( 451 KdJ = ) ions. 

 
A similar behavior for the Al concentration dependence of the dielectric con-

stant in HfO2 thin films is reported by Yoo et al. [43]. 
The electric properties of La doped HfO2 NPs are also studied. The radius of 

the La ion (117.2 pm) is larger compared to the ionic radius of Hf (85 pm) (this 
means d bJ J< ). Batra et al. [31] have shown that La doping stabilizes the or-
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thorhombic phase. It can be seen from Figure 4, curve 2, that compared to the 
Al doping, the ferroelectric region for the La doped HfO2 NP which starts at 
higher x value, x ≈ 0.05, is shifted to higher doping concentrations and is broad-
er due to the larger ionic radius of the La ion. In addition, the remanent polari-
zation rP  is larger for the La doping than that for the Al doping (Figure 4, 
curves 2 and 1). The maximum value of rP  is observed for x = 0.14. Schroeder 
et al. [44] reported also that La shows the highest remanent polarization values 
of all ion doped HfO2 thin films. Our results confirm the experimental data of 
Ref. [15] [44] for Al and La doped HfO2 thin films. It must be noted that the ob-
served here maximum values of the ion doped HfO2 NPs are comparable to the 
values reported for Al-doped (x = 0.025 - 0.03 [43] [44] and for La-doped (x = 
0.12 [16]) HfO2 epitaxial thin films. 

4. Conclusions 

The properties of HZO are theoretically investigated till now with DFT compu-
tations. In this paper for the first time is used the microscopic transverse Ising 
model in order to clarify the physical origin of the AFE hysteresis in ZrO2 NPs 
and the ferroelectricity in HZO and Al, La doped HfO2 NPs which is still under 
debate. Therefore, we have investigated the dependence of the polarization P in 
ion doped HfO2 NPs on electric field, dopant concentration x, size and temper-
ature. Different from the DFT we study the behavior of the material at finite 
temperatures. To that aim we use a Green’s function technique for 0T ≠ . It can 
be concluded that the change in the polarization rP  with respect to the doping 
concentration in HfO2 NPs is the result of the transformation of the crystalline 
phase due to the internal stress, of the appearance of an orthorhombic phase ex-
hibiting ferroelectricity. Moreover, we try to clarify some discrepancies in the li-
terature, for example about the appearing strain in HZO NPs (it is tensile and 
not compressible). 

We obtain that pure ZrO2 displays in the tetragonal phase an AFE-behavior 
( 0J < ) at high fields inducing a t-o phase transformation. Pure HfO2 is a linear 
dielectric in the monoclinic phase. With increasing the ZrO2 content in HZO the 
hysteresis loop is consistent with that for ferroelectric materials ( 0J > ). ( )rP x  
shows a maximum for x = 0.5. For x = 0 and x = 1 Pr = 0. It is shown that the 
properties of these three compounds—ZrO2, HfO2 and HZO—are changed with 
ion doping and size. The polarization P increases with decreasing NP size, i.e. 
the non-ferroelectric m-phase disappears with decreasing size. We show that 
strain can be used in very small NPs of HZO to induce a ferroelectric phase with 
large P and rP . 

The influence of Al and La doping on ( )rP x  in HfO2 NPs is also studied. 
Stress due to the different ionic radii of the doping ions compared to the host 
ones (which cause different pseudo-spin interaction constants in the defect states) 
as well as the distribution of oxygen vacancies play a key role for the phase 
transformations in doped HfO2 nanostructures. Both remanent polarizations 
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have a maximum value at x ≈ 0.03 and 0.14, respectively. The rP  curve for La 
doping is shifted to higher doping concentrations and is broader due to the larg-
er radius of the La ion. Moreover, rP  is larger for La-doped compared with that 
of Al-doped HfO2 NPs. 

There are some differences in the electric properties of ion doped HfO2 and 
ZrO2 nanostructures [43] [45] [46]. For example Yoo et al. [43] observed that the 
dielectric constant in Al doped HfO2 thin films undergoes a maximum whereas 
in Al doped ZrO2 thin films it decreases. The electric properties of ion doped 
HZO and ZrO2 NPs will be considered in the next paper. 
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