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Abstract

The exponential power distribution (EP) is a lifetime model that can exhibit increasing and
bathtub hazard rate function. This paper proposed a generalization of EP distribution, named
generalized exponential power (GEP) distribution. Some properties of GEP distribution will be
investigated. Recurrence relations for single moments of generalized ordered statistics from GEP
distribution are established and used for characterizing the GEP distribution. Estimation of the
model parameters are derived using maximum likelihood method based on complete sample, type
I, type II and random censored samples. A simulation study is performed in order to examine the
accuracy of the maximum likelihood estimators of the model parameters. Three applications to
real data, two with censored data, are provided in order to show the superiority of the proposed
model to other models.
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1 Introduction

The exponential power (EP) distribution with bathtub shape or increasing hazard rate is proposed
by Smith and Bain [1]. Its distribution function is given by

GEP (x) = 1− e
−
(
eλxα

−1
)
, (1.1)

where α > 0 is a shape parameter and λ > 0 is a scale parameter. This distribution may be thought
of as a truncated extreme-value distribution with a Weibull type parameterization rather than the
usual location-scale parameterization.

An extension of EP distribution has been proposed by Barriga et al. [2] based on family of
distributions given by Lehman alternatives (called exponentiated type family by Nadarajah and
Kotz [3]) considered by Gupta et al. [4]. Based on modification of the EP distribution, Chen
[5] proposed two parameter distribution with bathtub or increasing hazard rate function. Xei et
al. [6] proposed an extension of Chens model, known as the Weibull extension model, by adding
scale parameter. It has been further extended by Pappas et al. [7] on the latent of competing risk
problems, Basu and Klein [8], using the technique of Marshall and Olkin [9]. Another extension
proposed by Chaubey and Zhang [10] according to Lehman alternatives, called the extended Chen
(EC) family of distributions. Other generalizations in the literature can be found in [11, 12, 13, 14],
etc.

Complementary risks problem, [8], is a key concept arises in survival analysis. Simplistically, we
only observe the maximum component lifetime of a parallel system, which is the cause of failure
for the system. Another key concept is frailty models which arises in survival analysis to assess
the possible heterogeneity that may appears between the population individuals. In this case, the
population individuals don’t have the same risk to fail (they have different frail). For more details
on frailty models, see [15, 16, 17]. This paper aims to propose a new four-parameter distribution
called generalized exponential power (GEP) distribution. It is generated based on complementary
risks problem and frailty model. In this way we can model the possible heterogeneity in a data set.
So that, the proposed model can show a desirable flexibility in fitting real data sets.

The rest of this paper is organized as follows: Section 2 proposed the GEP distribution. Some of
its statistical and reliability properties are provided in section 3. In Section 4, the estimation of
the model parameters based on complete, type I, type II and random censored samples, using the
maximum likelihood method, is discussed. A simulation study is performed, in section 5, to examine
the accuracy of the maximum likelihood estimators of the model parameters. Finally, applications
to three distinctive real data sets are presented in Section 6.

2 The GEP Distribution

Consider Xi, i = 1, . . . , N, are independent and identically distributed random variables represent
lifetimes of N components connected in parallel where N is geometric random variable, independent
of Xs, with probability mass function given by P (X = x) = p(1 − p)n−1, n = 1, 2, . . . . Let F0(x)
be the baseline distribution function of Xs and H0(x) be the corresponding baseline cumulative
hazard rate function. The system failure is due to the failure of the maximum component lifetime
in such case the system undergoes a maintenance process. Thus, the heterogeneity may appears
between its components. The notion of frailty models is introduced to assess this heterogeneity in
a nice way. The classical and mostly applied frailty model assumes a proportional hazards model
in which the hazard rate function of the ith component depends additionally on an unobservable,
age-independent, random variable Zi which acts multiplicatively on the baseline hazard function

hi(x|Zi = z) = zh0(x)
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Let Zi, i = 1, . . . , N, are interpreted as independent and identically distributed non-negative random
variables with common frailty distribution function G(z). Thus, the survival function for the system
components given the frailty Zi is given by

F̄s(x|z) = e−zH0(x)

The mixture survival function for the system components is characterized by the laplace transform
of the frailty distribution as follows

F̄s(x) =

∫ ∞

0

F̄s(x|z)dG(z) = LG(H0(x)) (2.1)

Since, we only observe the lifetime of the last component to fail, V = X(n) = max {X1, X2, . . . , XN},
the conditional distribution function of V given N = n is given by

P (V ≤ x|N = n) = Fs(x)
n = (1− LG(H0(x)))

n

Thus, the distribution function of the new family of distributions is the marginal distribution
function of the last order statistic V = X(n) which given by

F (x) =
∞∑

n=1

(1− LG(H0(x)))
np(1− p)n−1.

F (x) = 1− LG(H0(x))

p+ (1− p)LG(H0(x))
, x > 0 (2.2)

The pdf corresponding to the distribution function in (2.2) can be expressed by

f(x) =
−ph0(x)L

′
G(H0(x))

[p+ (1− p)LG(H0(x))]2
(2.3)

The hazard rate function of the new family of distribution becomes

h(x) =
−ph0(x)L

′
G(H0(x))

LG(H0(x)) [p+ (1− p)LG(H0(x))]
(2.4)

Consider the exponential power distribution with distribution function (1.1) as the baseline distribu-
tion for the system components with baseline cumulative hazard function H0(x) = Exp(λxα − 1).
The positive stable distribution is a frailty distribution displays heavy tail behavior, which makes it
a good candidate for Zs. Its laplace transforms is given by L(s) = Exp(−sβ). The EP distribution
can be extended using Eq. (2.2), and (2.3). So that, the distribution function, survival function,
density function and hazard rate function of the generalized exponential power (GEP) distribution
are respectively given by

F (x) = 1− e
−
(
eλxα

−1
)β

p+ (1− p) e−(e
λxα−1)β

, (2.5)

F̄ (x) =
e
−
(
eλxα

−1
)β

p+ (1− p) e−(e
λxα−1)β

, (2.6)

f (x) =
pαλβxα−1eλx

α
(
eλx

α

− 1
)β−1

e
−
(
eλxα

−1
)β

[
p+ (1− p) e−(e

λxα−1)β
]2 , (2.7)

h (x) =
f (x)

F̄ (x)
=

pαλβxα−1eλx
α
(
eλx

α

− 1
)β−1

p+ (1− p) e−(e
λxα−1)β

, x > 0 (2.8)
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where α, λ, β and p > 0. The parameter λ controls the scale of GEP distribution, while p, α and
β are shape parameters. The GEP distribution, with parameters α, λ, β and p, is reduced to EP
distribution when β = 1 and p = 1.

Fig. 1. shows the possible shapes of the density function (2.7) of the GEP distribution.

0.6, 0.95, 0.65,p 0.2

0.5, 4 , 0.3,p 0.9

1.6, 1.6 , 0.65,p 0.5

0.2, 1.1 , 4,p 2

Fig. 1. The pdf of GEP distribution, for different values of parameters α, λ, β and p

The hazard rate function (2.8) is represented in fig. 2. for various values of α, λ, β and p. Fig.
2. shows a desirable flexibility of the hazard function of GEP distribution. It can accommodate
increasing, bathtub, decreasing, unimodal and increasing-decreasing-increasing (IDI) hazard functions.

0.01, 3.5, 0.24,p 6.3

0.01, 2.5, 1.2,p 2.8

0.35, 0.7, 1.4,p 0.2

0.2, 2.2, 0.35,p 3.1

0.8, 0.9, 0.13,p 8

1 , 0.45, 0.35,p 10

1.2, 0.3, 0.8,p 7

0.35, 0.67, 0.56,p 14

0.4, 1.3, 0.1,p 0.6

1.3, 4.2, 0.7,p 2.7

0.8, 2.44, 0.51,p 6

0.2, 1.3, 2.5,p 1.5

0.5, 1.05, 1.5,p 18

0.4, 0.5, 3.1,p 20

0.01, 2 , 0.56,p 12

0.02, 2.2, 0.7,p 8

0.02, 2.2, 1 ,p 8

0.01, 3 , 1 ,p 0.5

Fig. 2. Hazard function shapes of GEP distribution for different parameter values

An GEP distributed variable can be simulated using the inverse of the distribution function (2.5)

Q (u) = F−1
GEP (u) =

1

λ
1
α

[
ln

((
ln

(
1− (1− u) (1− p)

p (1− u)

)) 1
β

+ 1

)] 1
α

, (2.9)

where u has a uniform U(0, 1) distribution.
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3 Properties

This section investigates some statistical and reliability properties of the GEP distribution.

3.1 Skewness and kurtosis

To study the effect of the shape parameters β and p of the GEP distribution on the skewness and
kurtosis of the distribution, we plot the behavior of Galton skewness [18] and Moors kurtosis [19].

Galton skewness is

sk =
Q
(
3
4

)
+Q

(
1
4

)
− 2Q

(
2
4

)
Q
(
3
4

)
−Q

(
1
4

) .

Moors kurtosis is

ku =
Q
(
3
8

)
−Q

(
1
8

)
+Q

(
7
8

)
−Q

(
5
8

)
Q
(
3
4

)
−Q

(
1
4

)
where Q(q) is the 100qth quantile of the GEP distribution, given by

Q (q) =
1

λ
1
α

[
ln

((
ln

(
1− (1− q) (1− p)

p (1− q)

)) 1
β

+ 1

)] 1
α

, q ∈ (0, 1) . (3.1)

Fig. 3. shows Galton skewness and moors kurtosis of GEP distribution for selected values of the
shape parameters α, β and p with fixed scale parameter λ = 1.

2,p 1

5,p 1

0.6,p 0.1

1,p 0.1

0.5,p 2

1, 0.5

0.5, 2

0.5, 2

0.5,p 1

2,p 1.5

1,p 0.1

0.1,p 0.5

2, 1

0.5, 1

5, 0.1

Fig. 3. Plots of Galton skewness and moors kurtosis of GEP distribution as a
function of β and p

3.2 Moments

Many interesting characteristics and features of a distribution can be studied through its moments
and incomplete moments. Let X be a random variable following the GEP distribution. The rth
ordinary moments of the random variable X, denoted by µ

′
r, is the expected value of Xr

µ
′
r = E (Xr) =

∞∫
0

xrf(x)dx.
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The density function of GEP distribution in (2.7) can be represented in series form as follow:

the infinite series representation of

[
p+ (1− p) e

−
(
eλxα

−1
)β]−2

or equivalently

p−2

[
1−

(
p−1
p

)
e
−
(
eλxα

−1
)β]−2

can be obtained, since 0 <

∣∣∣∣( p−1
p

)
e
−
(
eλxα

−1
)β ∣∣∣∣ < 1 for p > 1

2
and

α, β > 0, as

f (x) = αλβ

∞∑
i=0

i+ 1

p

(
p− 1

p

)i

xα−1eλx
α
(
eλx

α

− 1
)β−1

e
−(i+1)

(
eλxα

−1
)β

.

Now, using binomial expansion of
(
eλx

α

− 1
)β−1

, thus

f (x) = αλβ
∞∑
i=0

∞∑
j=0

(−1)(j)
(
β − 1
j

)
i+ 1

p

(
p− 1

p

)i

xα−1e(β−j)λxα

e
−(i+1)

(
eλxα

−1
)β

. (3.2)

Using series representation (3.2) the rth ordinary moments of an GEP distributed random variable
can be expressed as

µ
′
r = αλβ

∞∑
i=0

∞∑
j=0

(−1)(j)
(
β − 1
j

)
i+ 1

p

(
p− 1

p

)i ∫ ∞

0

xr+α−1e(β−j)λxα

e
−(i+1)

(
eλxα

−1
)β

dx, (3.3)

where α, λ, β > 0 ,p > 1
2
and the integral

∫∞
0

xr+α−1e(β−j)λxα

e
−(i+1)

(
eλxα

−1
)β

dx can be obtained
numerically via mathematical packages.

As a special case when β = 1, µ
′
r can be written as

µ
′
r = αλ

∞∑
i=0

i+ 1

p

(
p− 1

p

)i ∫ ∞

0

xr+α−1eλx
α

e
−(i+1)

(
eλxα

−1
)
dx,

Letting y = eλx
α

in the above integral we get

µ
′
r =(λ)−

r
α

∞∑
i=0

ei+1 i+ 1

p

(
p− 1

p

)i ∫ ∞

1

(ln y)
r
α e−(i+1)ydy

=(λ)−
r
α

∞∑
i=0

ei+1 i+ 1

p

(
p− 1

p

)i

(
r

α
)!E

r
α
0 (i+ 1),

where Ej
s(z) =

1
( r
α
)!

∫∞
1

(ln y)jy−se−zydy,ℜ(j) > −1; s, z ∈ C, is an extension of generalized integro-

exponential function introduced by Pogany et al. [20]. The function Ej
s(z) can be presented as

Ej
s(z) =

∑
l≥0

(s+ 2)l
l!

Φ
(0,1)
µ,1 (−l, ȷ + 1, 1) 1F1(s+ l + 2; s+ 2;−z),

where Φ
(ρ,σ)
µ,ν (z, s, u) =

∑
n≥0

(µ)ρnzn

(ν)σn(n+u)s
is the Lin-Srivastava generalized Hurwitz-Lerch Zeta

function, [21]. Here (s+2)l =
Γ(s+l+2)
Γ(s+2)

denotes the generalized Pochhammer symbol and 1F1(a; b;x) =∑
n≥0

(a)nxn

(b)nn!
is the confluent hypergeometric function - Kummer’s function [22].
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3.3 Incomplete moments and some related measures

The rth incomplete moments of an GEP distributed random variable X is given by

mr(t) =

t∫
0

xrf(x)dx.

=αλβ

∞∑
i=0

∞∑
j=0

(−1)(j)
(
β − 1
j

)
i+ 1

p

(
p− 1

p

)i ∫ t

0

xr+α−1e(β−j)λxα

e
−(i+1)

(
eλxα

−1
)β

dx,

where α, λ, β > 0 ,p > 1
2
and the integral

∫ t

0
xr+α−1e(β−j)λxα

e
−(i+1)

(
eλxα

−1
)β

dx can be obtained
numerically via mathematical packages.

As a special case when β = 1, mr(t) can be written as

mr(t) =αλ

∞∑
i=0

i+ 1

p

(
p− 1

p

)i ∫ t

0

xr+α−1eλx
α

e
−(i+1)

(
eλxα

−1
)
dx,

=(λ)−
r
α

∞∑
i=0

ei+1 i+ 1

p

(
p− 1

p

)i ∫ eλtα

1

(ln y)
r
α e−(i+1)ydy

=(λ)−
r
α

∞∑
i=0

ei+1 i+ 1

p

(
p− 1

p

)i

H(eλt
α

; i+ 1,
r

α
),

where H(q; z, j) is given by, Pogany et al. [20],

H(q; z, j) =
∑

n,k≥0

k∑
m=0

(2)n+k

(2)n

(−1)m+nzn

n!k!(m+ 1)j+1

(
k
m

)
γ(j, (1− q−1)(m+ 1))

where γ(., .) is lower incomplete gamma function.

Some important statistical measures are defined based on the moments and the incomplete moments,
such as the mean deviation about the mean D(µ) and about the median D(M). These measures can

be expressed as D(µ) = 2µF (µ) − 2m1(µ) and D(M) = µ − 2m1(M), where µ = E (X) = µ
′
1 and

M = Median (X) = Q (0.5). Table 1. provides small numerical study for the first four moments,
variance, skewness, kurtosis and the mean deviations of GEP distribution for different scenarios of
β and p with fixed λ = 1 and α = 1.5

Another related measure is the mean residual life (MRL). The MRL is defined as the expected
value of the remaining lifetimes for a unit after a fixed time point t. It can be defined in terms of
the moments and incomplete moments as mrl(t) = [µ−m1(t)]/[1− F (t)]− t. The MRL is related

to the hazard function by the expression h (t) = 1+mrl
′
(t)

mrl(t)
. It can be shown that for increasing

(decreasing) hazard function the MRL is decreasing (increasing). Also, the mean inactivity time,
which represents the waiting time elapsed since the failure of an item on condition that this failure
had occurred in (0, t) is given by mit(t) = t − m1(t)/F (t). Fig. 4. shows plots of MRL and MIT
functions of GEP distribution for different parameters values.

An important application of the moments and incomplete moments is related to Bonferroni and
Lorenz curves of X, which can be defined by B(π) = m1(q)/(πµ) and L(π) = m1(q)/µ, respectively,
where q = Q(π) follows from (2.9) for a given probability π. The importance of Bonferroni and
Lorenz curves is due to the wide variety of the potential applications of these curves. These curves
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can be applied in financial studies, medicine, and insurance. Plots for Bonferroni and Lorenz curves
are presented in fig. 5.

Table 1. The first four moments, variance, skewness, kurtosis and mean deviations for
different scenarios of β and p with fixed λ = 1 and α = 1.5.

β p µ
′
1 µ

′
2 µ

′
3 µ

′
4 Variance Skewness Kurtosis D(µ) D(M)

0.2 1.9307 5.3482 16.4826 54.2391 1.6204 -0.0488 1.8572 1.0979 1.0935
0.5 1.2760 3.0943 8.7898 27.3000 1.4661 0.6197 2.1922 1.0536 1.0354
1 0.8483 1.8699 5.0509 15.1815 1.1504 1.2263 3.4483 0.8871 0.7953

0.2 1.5 0.6433 1.3493 3.5603 10.5491 0.9354 1.6456 4.8279 0.7555 0.6249
2 0.5205 1.0576 2.7525 8.0896 0.7866 1.9824 6.2345 0.6570 0.5123
3 0.3786 0.7397 1.8953 5.5208 0.5964 2.5267 9.0678 0.5218 0.3760
4 0.2983 0.5693 1.4459 4.1914 0.4803 2.9731 11.9063 0.4337 0.2972
0.2 1.2128 1.8320 3.0537 5.4272 0.3611 -0.2033 2.2300 0.4999 0.4977
0.5 0.8955 1.1583 1.7444 2.8824 0.3563 0.3243 2.1886 0.5056 0.5048
1 0.6680 0.7583 1.0593 1.6670 0.3120 0.7796 2.7670 0.4662 0.4563

0.5 1.5 0.5477 0.5740 0.7696 1.1817 0.2741 1.0803 3.4477 0.4271 0.4082
2 0.4698 0.4650 0.6067 0.9174 0.2443 1.3142 4.1394 0.3940 0.3683
3 0.3721 0.3397 0.4280 0.6353 0.2013 1.6807 5.5063 0.3427 0.3089
4 0.3117 0.2689 0.3313 0.4864 0.1718 1.9726 6.8424 0.3049 0.2671
0.2 0.9734 1.0520 1.2092 1.4527 0.1045 -0.5408 2.9226 0.2589 0.2565
0.5 0.8001 0.7562 0.7857 0.8717 0.1159 -0.1236 2.3894 0.2803 0.2799
1 0.6648 0.5572 0.5319 0.5545 0.1151 0.2152 2.3663 0.2814 0.2812

1 1.5 0.5871 0.4551 0.4124 0.4146 0.1104 0.4255 2.5244 0.2747 0.2736
2 0.5335 0.3899 0.3403 0.3335 0.1053 0.5817 2.7252 0.2668 0.2645
3 0.4614 0.3090 0.2555 0.2419 0.0961 0.8137 3.1535 0.2516 0.2471
4 0.4131 0.2592 0.2062 0.1907 0.0885 0.9884 3.5784 0.2383 0.2321
0.2 0.9013 0.8619 0.8574 0.8789 0.0496 -0.7897 3.6163 0.1744 0.1720
0.5 0.7818 0.6700 0.6099 0.5806 0.0588 -0.4115 2.7909 0.1957 0.1947
1 0.6846 0.5312 0.4474 0.4003 0.0625 -0.1146 2.5007 0.2044 0.2043

1.5 1.5 0.6267 0.4555 0.3651 0.3143 0.0628 0.0633 2.4649 0.2055 0.2055
2 0.5856 0.4050 0.3129 0.2619 0.0621 0.1919 2.5013 0.2042 0.2041
3 0.5286 0.3393 0.2481 0.1995 0.0598 0.3770 2.6442 0.1997 0.1990
4 0.4891 0.2967 0.2084 0.1628 0.0575 0.5117 2.8151 0.1946 0.1934
0.2 0.8680 0.7823 0.7246 0.6857 0.0290 -0.9632 4.2278 0.1314 0.1292
0.5 0.7768 0.6392 0.5481 0.4851 0.0358 -0.6017 3.2044 0.1506 0.1493
1 0.7009 0.5309 0.4250 0.3551 0.0395 -0.3240 2.7599 0.1608 0.1603

2 1.5 0.6548 0.4695 0.3595 0.2897 0.0408 -0.1612 2.6243 0.1641 0.1640
2 0.6216 0.4276 0.3166 0.2483 0.0412 -0.0454 2.5820 0.1651 0.1651
3 0.5748 0.3714 0.2616 0.1971 0.0410 0.1180 2.5975 0.1647 0.1646
4 0.5418 0.3339 0.2265 0.1657 0.0404 0.2344 2.6619 0.1630 0.1627
0.2 0.8370 0.7140 0.6183 0.5421 0.0135 -1.1806 5.1679 0.0880 0.0862
0.5 0.7751 0.6182 0.5042 0.4189 0.0174 -0.8317 3.8878 0.1031 0.1018
1 0.7225 0.5419 0.4188 0.3317 0.0200 -0.5708 3.2656 0.1126 0.1119

3 1.5 0.6898 0.4970 0.3708 0.2847 0.0212 -0.4215 3.0257 0.1167 0.1164
2 0.6659 0.4654 0.3380 0.2536 0.0219 -0.3175 2.9062 0.1189 0.1187
3 0.6317 0.4216 0.2942 0.2132 0.0226 -0.1738 2.8045 0.1209 0.1208
4 0.6071 0.3914 0.2651 0.1871 0.0228 -0.0740 2.7767 0.1215 0.1215
0.2 0.8225 0.6842 0.5746 0.4864 0.0078 -1.3076 5.8173 0.0661 0.0646
0.5 0.7757 0.6119 0.4895 0.3963 0.0102 -0.9628 4.3773 0.0784 0.0772
1 0.7354 0.5528 0.4233 0.3293 0.0120 -0.7087 3.6539 0.0865 0.0858

4 1.5 0.7101 0.5172 0.3849 0.2917 0.0130 -0.5653 3.3591 0.0904 0.0899
2 0.6916 0.4918 0.3581 0.2661 0.0135 -0.4665 3.2013 0.0926 0.0924
3 0.6647 0.4560 0.3214 0.2319 0.0142 -0.3317 3.0447 0.0951 0.0949
4 0.6453 0.4309 0.2964 0.2092 0.0145 -0.2393 2.9764 0.0962 0.0962
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Fig. 4. The MRL and MIT for different parameters values
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Fig. 5. Bonferroni and Lorenz curves for different parameters values

3.4 Recurrence relation for single moments of Generalized order
statistics and characterization of GEP distribution

The concept of generalized order statistics (gos) was proposed by Kamps [23] as a unified concept
describes ordered random variables and includes other models of ordered random variables as special
models.

Consider a random sample of size n drawn from a population whose distribution function is F (x),
survival function F̄ (x) and its density function f(x). Then the statistic X (s;n;m; k), s = 1, . . . , n,
is said to be the sth gos if its density function is given by

fX(s;n;m;k) (x) =
Cs−1

(s− 1)!
f (x)

[
F̄ (x)

]γs−1
gs−1
m (F (x)) , (3.4)

where Cs−1 =
s∏

i=1

γi, i = 1, . . . , n− 1, γi = k+(n− i) (m+ 1) , m, k are real numbers with k > 0

and for x ∈ (0, 1).

gm(x) =

{
1−(1−x)m+1

m+1
, if m ̸= −1

−log(1− x), if m = −1.

The pdf in (3.4) is a special case of more general pdf considered by Kamps [23], in which the
components of the vector m̃ = (m1, . . . ,mn−1) are chosen such that m1 = . . . = mn−1 = m. Hence

γi = k+n− i+
n−1∑
j=i

mj = k+(n− i) (m+ 1). The pdf in (3.4) is a special case of more general pdf

considered by Kamps [23], in which the components of the vector m̃ = (m1, . . . ,mn−1) are chosen

such that m1 = . . . = mn−1 = m. Hence γi = k + n− i+
n−1∑
j=i

mj = k + (n− i) (m+ 1).

In order to establish the recurrence relation for single moments of gos from GEP distribution, the
following lemma is considered, Athar and Islam [24].
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Lemma 3.1. Consider ξ(x) is a measurable function of x and is differentiable,then

E [ξ {X (s;n;m; k)}]− E [ξ {X (s− 1;n;m; k)}] = Cs−2

(s− 1)!

∞∫
0

ξ′ (x)
[
F̄ (x)

]γs gs−1
m (F (x)) dx

Theorem 3.2. For the GEP distribution, n ∈ N, k > 0, 1 ≤ s ≤ n and r = 1, 2, . . .

E [Xr (s;n;m; k)]− E [Xr (s− 1;n;m; k)] =
r

pαλβ γs
E [ϕ {X (s;n;m; k)}] (3.5)

where ϕ (x) = xr−α p+(1−p)e
−(eλxα

−1)
β

eλxα(eλ xα−1)β−1 .

Proof. By lemma 3.1, let ξ (x) = Xr, then

E [Xr (s;n;m; k)]− E [Xr (s− 1;n;m; k)] =
Cs−2

(s− 1)!

∞∫
0

r xr−1 [
F̄ (x)

]γs gs−1
m (F (x)) dx

The survival function of GEP distribution in (2.6) can be written as

F̄ (x) =
p+ (1− p) e

−
(
eλxα

−1
)β

pαλβxα−1eλ xα(eλxα − 1)β−1
f (x)

then we have

E [Xr (s;n;m; k)]−E [Xr (s− 1;n;m; k)] =

rCs−2

pαλβ (s− 1)!

∞∫
0

ϕ (x) f (x)
[
F̄ (x)

]γs−1
gs−1
m (F (x)) dx

Thus, we get

E [Xr (s, n,m, k)]− E [Xr (s− 1, n,m, k)] =
r

pαλβ γs
E [ϕ {X (s;n;m; k)}]

Remark 3.1. Let m = 0 and k = 1 in (3.5), then the recurrence relation for single moments of order
statistics of the GEP distribution is given as

E [Xr
s:n]− E [Xr

s−1:n] =
r

pαλβ (n− s+ 1)
E [ϕ {Xs:n}]

Remark 3.2. Let m = −1 and k ≥ 1 in (3.5), then the recurrence relation for single moments of kth
record values will be obtained.

A characterization result of GEP distribution is established based on recurrence relation (3.5). So
that, the necessary and sufficient condition for a random variable X to be distributed with GEP
distribution is (3.5), which can be proved as follows: if the recurrence relation in (3.5) is satisfied
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then using (3.4)

rCs−1

pαλβγs (s− 1)!

∞∫
0

ϕ (x) f (x)
[
F̄ (x)

]γs−1
gs−1
m (F (x)) dx

=
Cs−1

(s− 1)!

∞∫
0

xr f (x)
[
F̄ (x)

]γs−1
gs−1
m (F (x)) dx

− (s− 1) Cs−1

γs (s− 1)!

∞∫
0

xr f (x)
[
F̄ (x)

]γs+m
gs−2
m (F (x)) dx

=
Cs−1

(s− 1)!

∞∫
0

xr f (x)
[
F̄ (x)

]γs gs−2
m (F (x))

{
gm (F (x))

F̄ (x)
−

(s− 1)
[
F̄ (x)

]m
γs

}
dx

=
Cs−1

(s− 1)!

∞∫
0

xr d

{
−
[
F̄ (x)

]γsgs−1
m (F (x))

γs

}

Integrating by parts, we obtain

rCs−2

pαλβ (s− 1)!

∞∫
0

ϕ (x) f (x)
[
F̄ (x)

]γs−1
gs−1
m (F (x)) dx

=
r Cs−1

γs (s− 1)!

∞∫
0

xr−1 [F̄ (x)
]γsgs−1

m (F (x)) dx

which can be written as

r Cs−1

γs (s− 1)!

∞∫
0

[
F̄ (x)

]γs−1
gs−1
m (F (x))

[
xr−1 − ϕ (x) f (x)

pαλβ F̄ (x)

]
dx

An extension of Müntz-Szász theorem, [25], can be applied to obtain

xr−1 − ϕ (x) f (x)

pαλβ F̄ (x)
= 0

thus

F̄ (x) =
e
−
(
eλ xα

−1
)β

p+ (1− p) e−(e
λ xα−1)β

4 Inference

This section provides estimation of the parameter vector Θ = (λ, α, β, and p) using maximum
likelihood method. Asymptotic confidence intervals (CIs) for the model parameters are constructed
based on the ML estimates.

4.1 Maximum likelihood estimation

In what follows, the maximum likelihood estimation for the model parameters are presented based
on complete, type I censored, type II censored and random censored samples.
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Case I: Estimation from complete sample

The maximum likelihood estimator for Θ is obtained from maximizing the likelihood function, or
equivalently maximizing the log-likelihood function, corresponding to the GEP distribution. The
log-likelihood function from complete sample is given by

ℓ (λ, α, β, p) =nln (λ α β p)−
n∑

i=1

(
eλxi

α

− 1
)β

+ (α− 1)

n∑
i=1

ln (xi) + λ

n∑
i=1

xi
α

+(β − 1)

n∑
i=1

ln
(
eλxi

α

− 1
)
− 2

n∑
i=1

ln

(
p+ (1− p) e

−
(
eλxi

α
−1
)β) (4.1)

Case II: Estimation from type I censored sample

Consider a predetermined time xc represents the duration of studying the lifetime of n units and
suppose that d < n is the observed lifetimes until the time xc, then there are (n−d) censored times.
The log-likelihood function in this case is given by

ℓ (λ, α, β, p) =rln (λ α β p)−
∑
i∈T

(
eλxi

α

− 1
)β

+ (α− 1)
∑
i∈T

ln (xi) + λ
∑
i∈T

xi
α + ln(n!)− ln((n− r)!)

+ (β − 1)
∑
i∈T

ln
(
eλxi

α

− 1
)
− 2
∑
i∈T

ln

(
p+ (1− p) e

−
(
eλxi

α
−1
)β)

− (n− d)
(
eλxc

α

− 1
)β

− (n− d) ln

(
p+ (1− p) e

−
(
eλxc

α
−1
)β)

(4.2)

where, T denotes the set of non-censored observations with d lifetimes.

Case III: Estimation from type II censored sample

In this case, the study continues until the failure of the first r units, r < n. The log-likelihood
function, in this case, is given by

ℓ (λ, α, β, p) =rln (λ α β p) −
∑
i∈T

(
e
λxi

α
− 1

)β
+ (α − 1)

∑
i∈T

ln (xi) + λ
∑
i∈T

xi
α

+ ln(n!) − ln((n − r)!)

+ (β − 1)
∑
i∈T

ln
(
e
λxi

α
− 1

)
− 2

∑
i∈T

ln

p + (1 − p) e
−
(
eλxi

α
−1

)β

− (n − r)

(
e
λx(r)

α
− 1

)β
− (n − r) ln

p + (1 − p) e
−
(
e
λx(r)

α
−1

)β ,

(4.3)

where x(r) is the ordinary order statistic and T denotes the set of non-censored observations with
r lifetimes.

Case IV: Estimation from random censored sample

Random censoring is the more general scheme. Consider the observed times areXi = min (Ti, Ci) , i =
1, . . . , n, where Ti is the lifetime for the ith individual, assumed to have the GEP distribution, and
Ci is the censoring time for the ith individual, assumed to have a non-informative distribution,
i.e. a distribution that does not involve the parameters λ,α,β and p. The Ti and Cis are assumed
independent. In this case, the log-likelihood function is given by

ℓ (λ, α, β, p) =rln (λ α β p)−
n∑

i=1

(
eλxi

α

− 1
)β

+ (α− 1)
∑
i∈T

ln (xi) + λ
∑
i∈T

xi
α

+ (β − 1)
∑
i∈T

ln
(
eλxi

α

− 1
)
− 2
∑
i∈T

ln

(
p+ (1− p) e

−
(
eλxi

α
−1
)β)

−
∑
i∈C

ln

(
p+ (1− p) e

−
(
eλxi

α
−1
)β)

(4.4)
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where, T denotes the set of non-censored observations with r lifetimes and C denotes the set of
censored observations with n− r censored times.

For any of the above cases, the score functions are the partial derivatives ( ∂ℓ
∂λ

, ∂ℓ
∂α

, ∂ℓ
∂β

and ∂ℓ
∂p

)
of the log-likelihood functions with respect to λ,α,β and p. The maximum likelihood estimate
(MLE)Θ̂ = (λ̂, α̂, β̂, p̂) of Θ = (λ, α, β, p) is obtained by solving the nonlinear equations ∂ℓ

∂λ
=

0, ∂ℓ
∂α

= 0, ∂ℓ
∂β

= 0 and ∂ℓ
∂p

= 0 simultaneously. These equations can not be solved analytically so
explicit expressions for the MLEs of λ, α, β and p are not available. Hence, these equations can
be solved numerically via iterative methods such as Newton-Raphson technique using
mathematical packages.

4.2 Confidence intervals

The normal approximation of the estimated Θ can be used to construct approximate confidence
intervals and for testing the hypotheses on the parameters λ, α, β and p. Under conditions that
are fulfilled for the parameters in the interior of the parameter space, the asymptotic distribution

of
√
n
(
Θ̂−Θ

)
is N4(0, I

−1(Θ)), where I(Θ) is the expected Fisher information matrix. This

asymptotic behavior remains valid if I(Θ) is replaced by the observed information matrix evaluated
at Θ̂, that is J(Θ̂). The observed information matrix J(Θ) is given by

J(Θ) = −


Lλλ Lλα

Lαλ Lαα

Lλβ Lλp

Lαβ Lαp

Lβλ Lβα

Lpλ Lpα

Lββ Lβp

Lpβ Lpp


where the components of J(Θ) are the second derivative of the log-likelihood function with respect
to λ, α, β and p. The approximate 100(1− ν)% confidence intervals for the parameters λ, α, β and

p. are λ̂±Z ν
2

√
V ar

(
λ̂
)
, α̂±Z ν

2

√
V ar (α̂), β̂ ±Z ν

2

√
V ar

(
β̂
)
and p̂±Z ν

2

√
V ar (p̂) respectively,

where V ar(λ̂), V ar(α̂) ,V ar(β̂) and V ar(p̂) are the diagonal elements of I−1(Θ̂) corresponding to
each parameter and Z ν

2
is the upper ν

2
percentile of standard normal distribution.

5 Simulation Study

In this section, a Monte Carlo simulation study is performed in order to examine the accuracy of
the MLEs of the parameters of the GEP distribution. Observations are generated from the GEP
distribution using the inverse transformation method for different parameter combinations. The
simulation study is repeated 1000 times each with sample size n = 25, 50, 100, 150, 200, 400 and
800 and parameter vectors Θ = (λ, α, β, p)= (0.6,0.95,0.65,0.12), (0.5,2.5,1.5,2) and (1,0.4,0.8,0.2).
These selected values of Θ gives decreasing-increasing-decreasing, unimodal and decreasing shapes
for the density function of GEP distribution. Table 2 shows the results of the simulations correspond-
ing to complete samples. These results verify that mean square error(MSE) and average bias (ABS)
decay toward zero when the sample size n increases. The type I, type II and random censored
samples are generated at censoring percentage 10 % and 30% of the sample size. For type I
censored samples the simulation was carried with ending times xc = 3 and xc = 6. Tables 3, 4 and
5 show the simulation results based on type I, type II and random censored samples, respectively.
We noticed from these results that MSEs and average bias tends to decrease as
the sample size increases.
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Table 2. MSEs and ABs for the model parameters in case of complete samples

n λ = 0.6 α = 0.95 β = 0.65 p = 0.12
MSEs ABs MSE ABs MSEs ABs MSE ABs

25 0.00213 0.00746 0.00295 0.01023 0.00335 0.00991 0.30731 -0.00433
50 0.00097 0.00370 0.00132 0.00563 0.00150 0.00534 0.00874 0.00058
100 0.00050 0.00174 0.00067 0.00262 0.00076 0.00252 0.00045 0.00149
150 0.00032 0.00125 0.00043 0.00175 0.00049 0.00174 0.00031 0.00127
200 0.00012 0.00085 0.00033 0.00124 0.00037 0.00114 0.00022 0.00086
400 0.00024 0.00057 0.00016 0.00078 0.00018 0.00078 0.00011 0.00051
800 0.00006 0.00017 0.00008 0.00021 0.00009 0.00020 0.00005 0.00026
n λ = 0.5 α = 2.5 β = 1.5 p = 2

MSEs ABs MSE ABs MSEs ABs MSE ABs
25 0.0035 0.0154 0.1607 0.1136 0.0643 0.0493 0.5892 0.1600
50 0.0015 0.0074 0.0595 0.0459 0.0243 0.0159 0.2599 0.0791
100 0.0008 0.0026 0.0271 0.0223 0.0122 0.0100 0.1314 0.0286
150 0.0005 0.0018 0.0189 0.0188 0.0083 0.0092 0.0819 0.0128
200 0.0004 0.0023 0.0133 0.0157 0.0063 0.0074 0.0641 0.0275
400 0.0002 0.0012 0.0069 0.0059 0.0033 0.0018 0.0310 0.0147
800 0.0001 0.0006 0.0035 0.0015 0.0016 -0.0005 0.0142 0.0105
n λ = 1 α = 0.4 β = 0.8 p = 0.2

MSEs ABs MSE ABs MSEs ABs MSE ABs
25 0.0062 0.0118 0.0026 0.0097 0.0068 0.0125 0.0058 0.0156
50 0.0033 0.0065 0.0011 0.0048 0.0034 0.0063 0.0029 0.0085
100 0.0017 0.0031 0.0006 0.0024 0.0018 0.0035 0.0013 0.0044
150 0.0010 0.0028 0.0003 0.0025 0.0010 0.0034 0.0008 0.0017
200 0.0008 0.0005 0.0003 0.0012 0.0008 0.0011 0.0006 0.0004
400 0.0004 0.0012 0.0001 0.0009 0.0004 0.0012 0.0003 0.0010
800 0.0002 0.0011 0.0001 0.0008 0.0002 0.0014 0.0002 0.0004

Table 3. MSEs and ABs estimates for the model parameters in case of 10% and 30% type I
censored samples with xc = 3 and xc = 6

xc censoring n λ = 1 α = 0.4 β = 0.8 p = 0.2
MSE ABs MSE ABs MSE ABs MSE ABs

3 10% 10 0.0089 0.0640 0.0094 0.0778 0.0140 0.0904 0.0320 0.0905
30 0.0042 0.0530 0.0071 0.0786 0.0088 0.0848 0.0083 0.0585
50 0.0036 0.0530 0.0071 0.0810 0.0085 0.0867 0.0060 0.0547
100 0.0029 0.0510 0.0068 0.0804 0.0077 0.0845 0.0037 0.0492
200 0.0028 0.0510 0.0068 0.0814 0.0076 0.0857 0.0029 0.0484

3 30% 10 0.0127 -0.1122 0.0030 -0.0249 0.0095 -0.0806 0.0484 0.1258
30 0.0127 -0.1120 0.0013 -0.0254 0.0076 -0.0823 0.0156 0.0971
50 0.0126 -0.1117 0.0011 -0.0265 0.0074 -0.0831 0.0137 0.0969
100 0.0126 -0.1116 0.0008 -0.0237 0.0068 -0.0808 0.0093 0.0867
200 0.0126 -0.1081 0.0007 -0.0241 0.0067 -0.0810 0.0084 0.0863

6 10% 10 0.0110 -0.0835 0.0041 -0.0521 0.0119 -0.0880 2.7674 0.1313
30 0.0110 -0.0973 0.0031 -0.0521 0.0102 -0.0940 0.0052 0.0159
50 0.0107 -0.0992 0.0030 -0.0523 0.0099 -0.0951 0.0028 0.0110
100 0.0106 -0.1008 0.0029 -0.0523 0.0096 -0.0962 0.0014 0.0064
200 0.0103 -0.1006 0.0028 -0.0526 0.0095 -0.0965 0.0007 0.0069

6 30% 10 0.0829 -0.2922 0.0229 -0.1493 0.0747 -0.2708 0.0356 0.0778
30 0.0848 -0.2923 0.0218 -0.1469 0.0732 -0.2699 0.0073 0.0254
50 0.0856 -0.2924 0.022 -0.1481 0.0741 -0.2718 0.0046 0.0239
150 0.0855 -0.293 0.0219 -0.1478 0.0739 -0.2716 0.0022 0.0186
200 0.0854 -0.2972 0.0218 -0.1475 0.0736 -0.2712 0.001 0.0149
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Table 4. MSEs and ABs estimates for the model parameters in case of 10% and 30% type II
censored samples

censoring n λ = 0.5 α = 2.5 β = 1.5 p = 2
MSE ABs MSE ABs MSE ABs MSE ABs

10% 10 0.0153 -0.0211 0.5132 -0.0491 0.1515 -0.0218 3.13 0.726
30 0.0113 -0.0841 0.4176 -0.446 0.1283 -0.2135 0.562 0.166
50 0.0105 -0.0958 0.3195 -0.5272 0.0937 -0.2659 0.307 0.096
100 0.0092 -0.1131 0.2839 -0.6293 0.0928 -0.3392 0.136 0.029
200 0.0087 -0.1221 0.265 -0.6823 0.0881 -0.3798 0.0755 0.003

30% 10 0.0578 -0.1357 1.5881 -0.5191 0.5593 -0.1549 5.83 1.057
30 0.0523 -0.1979 1.4213 -0.9918 0.4724 -0.4971 0.795 0.236
50 0.0455 -0.211 1.2196 -1.0893 0.3716 -0.5853 0.462 0.173
100 0.0408 -0.2271 1.045 -1.1838 0.2974 -0.6748 0.205 0.065
200 0.0272 -0.2397 0.844 -1.2567 0.2959 -0.7427 0.092 0.05

censoring n λ = 1 α = 0.4 β = 0.8 p = 0.2
MSE ABs MSE ABs MSE ABs MSE ABs

10% 10 0.039 -0.059 0.0116 -0.0237 0.0377 -0.0527 0.0296 0.0672
30 0.0314 -0.1367 0.01 -0.0745 0.0305 -0.1342 0.0049 0.0167
50 0.0266 -0.1511 0.0095 -0.0822 0.0268 -0.1478 0.0031 0.0078
100 0.0262 -0.1717 0.0078 -0.095 0.0254 -0.1697 0.0015 0.006
200 0.0244 -0.1943 0.007 -0.1064 0.023 -0.1914 0.0006 0.0026

30% 10 0.1673 -0.209 0.0381 -0.0869 0.1365 -0.1812 0.0373 0.0904
30 0.1473 -0.3157 0.0344 -0.1566 0.1215 -0.2907 0.0092 0.0314
50 0.124 -0.3465 0.0296 -0.17 0.1035 -0.3171 0.0044 0.0144
100 0.1061 -0.3803 0.0258 -0.1844 0.0893 -0.3461 0.0019 0.0066
200 0.0624 -0.4066 0.0214 -0.1946 0.0564 -0.3678 0.001 0.0059

Table 5. MSEs and ABs estimates for the model parameters in case of 10% and 30% random
censored samples

censoring n λ = 0.5 α = 2.5 β = 1.5 p = 2
MSE ABs MSE ABs MSE ABs MSE ABs

10% 10 0.0082 -0.0614 0.6584 0.2362 0.2357 0.1609 25.4870 2.3788
30 0.0055 -0.0634 0.1547 0.0348 0.0869 0.1005 10.5811 1.8292
50 0.0054 -0.0663 0.0698 -0.0386 0.0496 0.0740 4.6435 1.5588
100 0.0045 -0.0637 0.0316 -0.0198 0.0305 0.1067 2.4563 1.3225
200 0.0045 -0.0653 0.0149 -0.0412 0.0195 0.1037 1.7589 1.2300

30% 10 0.0419 -0.1990 0.4525 0.1174 0.7744 0.6150 24.2980 7.6671
30 0.0354 -0.1859 0.1053 -0.1244 0.3432 0.4398 18.0970 5.0298
50 0.0332 -0.1804 0.0831 -0.1682 0.2627 0.3854 7.4370 2.6214
100 0.0322 -0.1785 0.0589 -0.1993 0.1698 0.3481 2.0630 0.9823
200 0.0319 -0.1783 0.0486 -0.1987 0.1466 0.3493 1.4791 0.8514

censoring n λ = 1 α = 0.4 β = 0.8 p = 0.2
MSE ABs MSE ABs MSE ABs MSE ABs

10% 10 0.0556 0.0395 0.0353 0.0968 0.1111 0.1420 0.0823 0.1959
30 0.0315 -0.0215 0.0145 0.0497 0.0477 0.0585 0.0299 0.1173
50 0.0217 -0.0678 0.0068 0.0183 0.0217 0.0008 0.0180 0.0868
100 0.0199 -0.1021 0.0033 -0.0028 0.0119 -0.0393 0.0090 0.0588
200 0.0193 -0.1215 0.0021 -0.0062 0.0098 -0.0636 0.0057 0.0461

30% 10 0.1634 -0.2518 0.0501 0.1134 0.1155 0.0940 1.4221 0.6615
30 0.1558 -0.3486 0.0118 0.0119 0.0385 -0.0708 0.2340 0.3944
50 0.1395 -0.3627 0.0066 -0.0051 0.0287 -0.1029 0.1490 0.3314
100 0.1361 -0.3900 0.0040 -0.0315 0.0303 -0.1488 0.0959 0.2740
200 0.1044 -0.4016 0.0037 -0.0438 0.0333 -0.1693 0.0682 0.2377
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6 Application

In this section, three real data sets, two with censored data, are used to show the potentiality of
the GEP distribution in modeling positive data. The GEP distribution is fitted to the data sets.
For the comparison, the following models are considered as competitive for GEP distribution:

• Complementary exponential power (CEP) distribution [2] with density function given by

fCEP (x) =
βθxβ−1

αβ exp
(
1 +

(
x
α

)β − e(
x
α )

β) [
1− exp

(
1− e(

x
α )

β)]θ−1

• Complementary exponentiated exponential geometric (CEEG) distribution [26] with density
function given by

fCEEG(x) = αλpe−xλ
(
1− e−xλ

)α−1[
1− (1− p)

(
1− e−xλ

)α]−2

• The exponentiated power generalizedWeibull (EPGW) distribution [27] with density function
given by

fEPGW (x) = αβγλ xγ−1 (1 + λ xγ)α−1e1−(1+xγλ)α
(
1− e1−(1+xγλ)α

)β−1

• A modified distribution referred to as MDAL distribution introduced by Tafakori [28] with
density function given by

fMDAL(x) =
(

−αβλ
ln p

xβ−1
(
1 + λ xβ

)α−1
)(

(1−p) exp[1−(1+xβλ)α]
1−(1−p) exp[1−(1+xβλ)α]

)
For the data sets, the MLEs of the parameters of the selected distributions is obtained. To choose
the best possible model, we obtained Akaike information criterion (AIC), Bayesian information
criterion (BIC), Kolmogorov-Smirnov (KS) distances between the empirical distribution function
and the fitted distribution function (as well as its respective P-value), AndersonDarling statistic
(A∗) and Cramrvon Mises statistic (W ∗). The statistics A∗ and W ∗ are described in details by Chen
and Balakrishnan [29]. The probability-probability (p-p) plots for the fitted models for the data
sets are presented. For the p-p plots for complete data, we plotted F (x(i); Θ̂) against ( i−c

n+1−2c
), i =

1, 2, . . . , n, where x(i) are the ordered values of the observed data. For censored data, an analogous
modification of Kaplan-Meier estimator considered the plotting position (see Waller and Turnbull
[30])

p (xi) = 1− n− c+ 1

n− 2c+ 1

∏
j∈S,j≤i

n− j − c+ 1

n− j − c+ 2
(6.1)

where S is the set of all subscripts j such that xj is an observed failure time and 0 ≤ c ≤ 1, we set
c = 3

8
(see Harter [31]). As a measure of closeness to the diagonal line, the sum of squared (SS)

difference between observed and expected probability is computed. The model with less values of
AIC, BIC, SS, K-S, W ∗ and A∗ is considered the best fit for a data set. The required numerical
evaluations are implemented using Mathematica software.

6.1 Aarset data

The Aarset data set describes lifetimes of 50 industrial devices on life testing at a time zero [32].
The fitting results for GEP distribution and the competitive models, selected in this paper, are
presented in table 6. To show that the likelihood functions have a unique solution, the profiles of
the log-likelihood function of α, β, λ and p are plotted in fig. 6.

Furthermore, visual comparison using Kaplan-Meier curve and the fitted survival curves and empirical
and fitted densities in figure 7 and Q-Q plots for the fitted distributions in fig. 8. Table 6. and figs
(7, 8) show a very strong evidence for the superiority GEP distribution to the other models.
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Table 6. MLEs of the parametrs discrimination criteria for Aarset data

Model MLEs AIC BIC SS
K-S

(p-value)
W ∗ A∗

GEP
λ̂=5.046× 10−9, α̂= 4.85,

β̂=0.0998, p̂= 0.51.
437.781 445.429 0.0902

0.127
(0.3958)

0.0907 0.8059

EP λ̂= 0.659, α̂= 0.0117. 473.861 477.685 0.4932

CEP
α̂=27.97, β̂=0.162,

θ̂= 16.72.
461.522 467.258 0.5823

0.2109
(0.0234)

0.5848 3.656

CEEG
λ̂=0.036, α̂= 0.2569,
p̂= 0.0675.

474.175 479.911 0.302
0.151

(0.2041)
0.3045 2.1719

EPGW
λ̂=5.9× 10−5, α̂= 1.2923,

β̂=0.4262, γ̂= 2.1777.
477.284 484.932 0.4492

0.1776
(0.0853)

0.45005 3.6955

MDAL
λ̂=0.0107, α̂= 14.8816,

β̂=0.5662, p̂= 172.357.
464.641 472.289 0.3091

0.1376
(0.3003)

0.309 2.4157

Fig. 6. For Aarset data: The profiles of the log-likelihood function of α, β, λ and p

Kaplan Meier

GEP

EP

CEP

CEEG

EPGW

MDAL

(a) (b)

Fig. 7. For Aarset data: (a) Empirical and fitted densities (b) Empirical and fitted
survival functions

6.2 Bladder cancer data

The second data set, with random censoring mechanism, consists of the remission times (in months)
of 137 bladder cancer patients with nine censored times [33]. The fitting results for GEP distribution
and the competitive models, selected in this paper, are presented in table 7. To show that the
likelihood functions have a unique solution, the profiles of the log-likelihood function of α, β, λ and
p are plotted in fig. 9.

Furthermore, visual comparison using Kaplan-Meier curve and the fitted survival curves in fig. 10
and p-p plots for the fitted distributions in fig. 11. These results show a strong evidence for the
superiority GEP distribution to the other models.
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Fig. 8. Q-Q plots for the fitted distributions for Aarset data

Table 7. MLEs of the parametrs discrimination criteria for bladder cancer data

Model MLEs AIC BIC SS
K-S

(p-value)
W ∗ A∗

GEP
λ̂=0.2076, α̂= 0.3016,

β̂=4.5935, p̂= 42.474.
844.575 856.255 0.01225

0.0462
(0.9321)

0.0504 0.3273

EP λ̂= 0.1337, α̂= 0.6733. 872.544 878.384 0.5393
0.133

(0.0157)
0.7922 4.4975

CEP
α̂=2.3641, β̂=0.2394,

θ̂= 7.9152.
846.695 855.455 0.1644

0.0665
(0.5801)

0.1069 0.6237

CEEG
λ̂=0.0658, α̂= 1.6238,
p̂= 4.4606.

843.583 852.343 0.0221
0.0557
(0.7884)

0.0805 0.4948

EPGW
λ̂=0.3289, α̂= 0.6519,

β̂=1.7069, γ̂= 0.9753.
846.297 857.977 0.0362

0.0662
(0.5847)

0.1135 0.6016

MDAL
λ̂=0.0914, α̂= 0.444,

β̂=1.5523, p̂= 0.5718.
845.573 857.253 0.0256

0.0608
(0.6927)

0.0931 0.5163

Fig. 9. For bladder cancer data: The profiles of the log-likelihood function of α, β, λ
and p
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Kaplan Meier

GEP

EP

CEP

CEEG

EPGW

MDAL

Fig. 10. Empirical and fitted survival functions for bladder cancer data

Fig. 11. p-p plots for the fitted distributions for bladder cancer data

6.3 Remission times

The last data set available in Bain and Engelhardt [34]. This data set represents the remission times
of forty leukemia patients due to administrating a new drug. The experiment was terminated after
7 months (210 days). The number of observations during the experiment were 22 remission times.
Clearly, it is a Type-I censored sample with n = 40 and d = 22. For type I censored data we consider
AIC and modifications of AndersonDarling statistic (A∗∗) and Cramrvon Mises statistic (W ∗∗) as
discrimination criteria. These criteria were discussed in details by D’Agostino and Stephens [35].
Comparing the empirical survival function with the fitted survivals in fig. (12). From the results in
table 7. it can be observed that GEP distribution provides a better fit to thee data set.
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Table 8. MLEs of parametrs, AIC, A∗∗ and W ∗∗ for remission times data

Model MLEs AIC A∗∗ W ∗∗

GEP
λ̂=0.0055, α̂= 0.7959,

β̂=2.7942, p̂= 8.821.
291.466 0.2056 0.0269

EP λ̂= 0.008, α̂= 0.7921. 301.534 1.75421 0.2902

CEP
α̂=78.6118, β̂=0.5825,

θ̂= 8.8172.
343.251 20.755 3.4995

CEEG
λ̂=0.0256, α̂= 3.565,
p̂= 0.0235.

293.702 0.8941 0.0633

EPGW
λ̂=3.6679, α̂=0.143,

β̂=16.0951, γ̂= 1.5913.
298.59 0.4892 0.0746

MDAL
λ̂=0.003, α̂= 0.7428,

β̂=0.8907, p̂= 0.1365.
314.298 1.4181 0.2101

GEP

EP

CEP

CEEG

EPGW

MDAL

Fig. 12. Empirical and fitted survival functions for remission times data

7 Conclusion

In this paper, a generalization of the exponential power distribution is generated, on the latent of
complementary risks problem and frailty models, with two extra shape parameters. The hazard
function of the new distribution is more flexible than EP distribution. Some statistical and reliability
properties of the GEP distribution are presented. Estimations of the model parameters have
provided using maximum likelihood method based on complete, type I, type II and random censored
samples. Monte Carlo simulations are carried out to compare the long-run performance of the
maximum likelihood estimators of the model parameters. At the end of this paper the proposed
model has been compared to other alternative models by fitting these models to real data sets; and
the results showed that the GEP distribution provides a better fit whether the data are examples
of complete sample, random or type I censored samples.
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