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Abstract

The promise of gyrochronology is that, given a star’s rotation period and mass, its age can be inferred. The reality
of gyrochronology is complicated by effects other than ordinary magnetized braking that alter stellar rotation
periods. In this work, we present an interpolation-based gyrochronology framework that reproduces the time- and
mass-dependent spin-down rates implied by the latest open cluster data, while also matching the rate at which the
dispersion in initial stellar rotation periods decreases as stars age. We validate our technique for stars with
temperatures of 3800–6200 K and ages of 0.08–2.6 gigayears (Gyr), and use it to reexamine the empirical limits of
gyrochronology. In line with previous work, we find that the uncertainty floor varies strongly with both stellar mass
and age. For Sun-like stars (≈5800 K), the statistical age uncertainties improve monotonically from±38% at
0.2 Gyr to±12% at 2 Gyr, and are caused by the empirical scatter of the cluster rotation sequences combined with
the rate of stellar spin-down. For low-mass K dwarfs (≈4200 K), the posteriors are highly asymmetric due to
stalled spin-down, and±1σ age uncertainties vary non-monotonically between 10% and 50% over the first few
gigayears. High-mass K dwarfs (5000 K) older than ≈1.5 Gyr yield the most precise ages, with limiting
uncertainties currently set by possible changes in the spin-down rate (12% systematic), the calibration of the
absolute age scale (8% systematic), and the width of the slow sequence (4% statistical). An open-source
implementation, gyro-interp, is available online at github.com/lgbouma/gyro-interp.

Unified Astronomy Thesaurus concepts: Stellar ages (1581); Stellar rotation (1629); Field stars (2103); Bayesian
statistics (1900)

Supporting material: data behind figure

1. Introduction

The ages of stars are fundamental for our understanding of
planetary, stellar, and galactic evolution. Unfortunately, stellar
ages are not directly measurable, and so the astronomical age
scale is tied to a mix of semifundamental, model-dependent,
and empirical techniques (Soderblom 2010). One empirical
age-dating method is to use a star’s spin-down as a clock
(Kawaler 1989; Barnes 2003). This gyrochronal technique
leverages direct measurements of stellar surface rotation
periods, typically inferred from photometric modulation
induced by spots or faculae. The clock’s mechanism is
magnetized braking that drives rotation periods to increase as
the square root of time (Weber & Davis 1967; Skumanich
1972). While data from open clusters have shown the
limitations of this approximation, the idea has been useful,
and it has set the foundation for many empirical studies of how
rotation period, age, and activity are interrelated (e.g., Noyes
et al. 1984; Barnes 2007; Mamajek & Hillenbrand 2008;
Barnes 2010; Angus et al. 2019; Spada & Lanzafame 2020).

This work aims to clarify the accuracy and precision of
gyrochronology for stars on the main sequence. Our main
impetus for writing was the realization that available models
did not match observations of open cluster rotation periods
(e.g., Curtis et al. 2019a, 2020). The disagreement was most
severe for K dwarfs, which have stellar rotation rates that stall

from 0.7 to 1.4 Gyr (Agüeros et al. 2018; Curtis et al. 2020).
While a likely physical explanation centers on the timescale for
angular momentum exchange between the radiative core and
convective envelope (Spada & Lanzafame 2020), accuracy is
paramount because any bias in the rotation models propagates
into bias on the inferred ages.
Regarding precision, previous analytic studies have reported

age uncertainties for field FGK dwarfs of 13%–20%
(Barnes 2007), and have noted that these uncertainties increase
for young stars due to larger empirical scatter in their rotation
sequences (Barnes 2010). The question of how this empirical
scatter, often described as “fast” and “slow” sequences in the
rotation–color plane, limits gyrochronal precision was analyzed
in detail by Epstein & Pinsonneault (2014). For stars older than
0.5 Gyr, their approach was to consider the range of possible
ages that a star with fixed rotation period and mass might have,
and to convert this range into an age uncertainty. Our work
formalizes this idea. If an astronomer wishes to infer the age of
an individual field star, they do not know whether their star is
on the fast or slow sequence. They simply know the star’s
rotation period and mass, and so they must marginalize over the
population-level scatter in order to determine a posterior
probability distribution for the age. Ultimately, Epstein &
Pinsonneault (2014) emphasized that this type of approach
needed empirical guidance in order to mitigate the systematic
uncertainties in the spin-down models; such guidance now
exists.
Using the latest available open cluster data (Section 2), we

calibrate a new gyrochronal model that interpolates between
the open cluster rotation sequences (Section 3). Given a star’s
rotation period, effective temperature, and their uncertainties,
our framework returns the implied gyrochronal age posterior,
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which is often asymmetric (Section 4). We validate our model
against both training and test data, and focus our discussion and
conclusions (Section 5) on the empirical limits of gyrochronal
age dating. An open-source implementation is available online
at github.com/lgbouma/gyro-interp.

2. Benchmark Clusters

2.1. Rotation Data

To calibrate our model, we first collected rotation period data
from open clusters that have been surveyed using precise space
and ground-based photometers. The clusters that we examined
are listed in Table 1, along with their ages and V-band
extinctions. These clusters were selected based on the
completeness of available rotation period catalogs for F, G,
K, and early-M dwarfs. The Pleiades, Blanco-1, and Psc-Eri
were concatenated as a 120 megayear (Myr) sequence, because
their rotation–temperature sequences were visually indistin-
guishable. The upper age anchor, Ruprecht-147, was similarly
combined with NGC-6819 to make a 2.6 Gyr sequence. While
older populations have been studied (Barnes et al. 2016;
Dungee et al. 2022), their rotation–color sequences do not yet
have sufficient coverage to be usable in our core analysis. Our
lower anchor, α Per, was selected based on its converged
rotation–temperature sequence above 0.8Me (Boyle &
Bouma 2022). Our model is therefore only constrained between
80Myr and 2.6 Gyr.

2.2. Effective Temperatures

For our effective temperature scale, we adopted the Curtis
et al. (2020) conversion from dereddened Gaia Data Release 2
(DR2) GBP−GRP colors to effective temperatures. This
calibration was determined using FGK stars with high-
resolution spectra (Brewer et al. 2016), nearby stars with
interferometric radii (Boyajian et al. 2012), and M dwarfs with
optical and near-infrared spectroscopy (Mann et al. 2015). The
typical precision in temperature from this relationship is 50 K
for stars near the zero-age main sequence (ZAMS). We
explicitly used Gaia DR2 mean photometry to calculate the
temperatures, since the intrinsic difference between the Gaia
DR2 and DR3 colors is important at this scale. For all other
Gaia-based quantities in our analysis, we used the DR3 values.

For the extinction corrections, we adopted the reddening values
listed in Table 1. We dereddened the observed Gaia DR2
GBP−GRP colors by assuming E(GBP−GRP)= 0.415 AV,
similarly to Curtis et al. (2020).

2.3. Binarity Filters

Binarity can affect the locations of stars in rotation–color
space by observationally biasing photometric color measure-
ments, and also by physically altering stellar rotation rates
through, e.g., tidal spin-up or early disk dispersal. To remove
possible binaries from our calibration sample, we applied the
following filters to each cluster data set.
Photometric binarity—We plotted the Gaia DR3 color–

absolute magnitude diagrams in MG versus GBP−GRP,
G−GRP, and GBP−G, and manually drew loci to remove
over- or underluminous stars in each diagram.
RUWE—We examined diagrams of the Gaia DR3 renorma-

lized unit weight error (RUWE) as a function of brightness, and
based on these diagrams we required RUWE> 1.2. Outliers in
this space can be caused by astrometric binarity, or by
marginally resolved point sources fitted with a single-source
PSF model by the Gaia pipeline.
Radial velocity scatter—We examined diagrams of Gaia

DR3 “radial velocity error” as a function of G-mag. Since this
quantity is the standard deviation of the Gaia RV time series,
outliers can imply single-lined spectroscopic binarity. We
manually removed such stars.
Crowding—We queried Gaia DR3 to determine how many

stars were within one instrument pixel distance of each target
star (e.g., 4″/px for Kepler). Any stars within ≈20× the
brightness of the target star (ΔG< 3.25) were noted, and the
target stars were removed from further consideration. Although
not all visual companions are binaries, their presence can
complicate rotation period measurements, in particular in
cluster environments.
Gaia DR3 Non-single Stars—Gaia DR3 includes a column to

flag known or suspected eclipsing, astrometric, and spectro-
scopic binaries. We directly merged against this column to
remove such sources.
Final calibration sample—The combination of the filters

described above yields the set of stars that show no evidence
for binarity or crowding. However, some of the rotation period

Table 1
Reference Clusters and Parameters Used for the Core Gyrochrone Calibration

Name Reference Age Age Provenance AV AV Provenance Instrument Prot Provenance Recovered Ageb

α Per -
+79.0 2.3

1.5 Myr (1) 0.28 (2a) TESS (2) -
+70 8

8 Myr

Pleiades -
+127.4 10.0

6.3 Myr (1) 0.12 (3) K2 (4) -
+117 6

6 Myr

Blanco-1 -
+137.1 33.0

7.0 Myr (1) 0.031 (5) NGTS (5) -
+134 9

11 Myr

Psc-Eri stream Pleiades-coeval (6) 0 (6) TESS (6) -
+137 10

11 Myr

NGC-3532 300 ± 50 Myr (7) 0.034 (8) Y4KCam (8) -
+306 9

11 Myr

Group-X 300 ± 60 Myr (9) 0.016 (9) TESS (9) -
+260 27

29 Myr

Praesepe 670 ± 67 Myr (10) 0.035 (3) K2 (11) -
+738 20

22 Myr

NGC-6811 1040 ± 70 Myr (12) 0.15 (3) Kepler (12) -
+946 15

16 Myr

NGC-6819 2.5 ± 0.2 Gyr (13) 0.44 (3) Kepler (14) -
+2518 33

32 Myr

Ruprecht-147 2.7 ± 0.2 Gyr (15) 0.30 (3) K2 & Palomar Transient Factory (3) -
+2637 52

51 Myr

Notes. References: (1) Galindo-Guil et al. 2022; (2) Boyle & Bouma 2022; (3) Curtis et al. 2020; (4) Rebull et al. 2016; (5) Gillen et al. 2020; (6) Curtis et al. 2019b;
(7) Fritzewski et al. 2019; (8) Fritzewski et al. 2021; (9) Messina et al. 2022; (10) Douglas et al. 2019; (11) Rampalli et al. 2021; (12) Curtis et al. 2019a; (13) Jeffries
et al. 2013; (14) Meibom et al. 2015; (15) Torres et al. 2020.
a The adopted α Per reddening varies across the cluster, per Boyle & Bouma (2022); this table reports the median value.
b See Section 4.1.
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analyses in Table 1 include additional relevant quality flags.
For instance, light curves showing multiple photometric
periods can indicate unresolved binarity. We used all relevant
filters available from the original authors, if they were designed
to select single stars with reliable rotation periods. The final
combination of these filters with our own flag for possible
binarity yields our sample of benchmark rotators.

2.4. The Single-star Calibration Sequence

Figure 1 is the result of the data curation process described in
Sections 2.1 through 2.3. While we have omitted the possible
binaries described in Section 2.3, for visual clarity, they are
included in the data behind the figure. The gray lines are
derived from polynomial fits that we describe in the following
section. Comparing against the rotation–color sequences in,
say, Godoy-Rivera et al. (2021), it is impressive how sparse the

fast sequence is for hot stars. In the 120Myr clusters, both
Blanco-1 and Psc-Eri have no apparently single fast rotators
hotter than 5000 K. The Pleiades has four. The rapid rotator
sequence is similarly sparse at 300Myr. The large binary
fraction of fast-sequence stars warrants future analysis, to
understand whether the binary separations and mass ratios for
these systems are typical of the field binary population.

3. A Gyrochronology Model

Here, we present a model that aims to accurately describe the
evolving rotation period distributions of F7–M0 dwarfs with
ages of 0.08–2.6 Gyr. The goal is to then use this model to
assess the precision with which rotation periods can be used to
infer ages. To perform this analysis, our model needs to
account for the trends visible in Figure 1: stellar spin-down
rates vary with both mass and age; stellar spin-down can stall;
and higher-mass stars younger than Praesepe tend to converge
to the slow sequence before lower-mass stars. Our approach
will ultimately use interpolation, based on the logic that there
are certain regions of Figure 1 in which a hypothetical star
located between two cluster sequences would need to have an
age intermediate to those two clusters. A few formalities are
needed to make this idea rigorous.

3.1. Formalism

For a given star, we have an observed rotation period P̃rot and
stellar effective temperature T̃eff with measurement uncertain-
ties ˜sProt and ˜sTeff . Given these data, we want to find the
posterior probability distribution for the age t of the star. We
write the corresponding probability density as p(t|D), where

{ ˜ ˜ }=D TP ,rot eff are the observed data. We find p(t|D) by
marginalizing over the joint probability density p(t, Prot,
Teff|D), where Prot and Teff are the true rotation period and
temperature of the star. Mathematically, this means

∬( ∣ ) ( ∣ ) ( )=p t D p P T t D P T, , d d . 1rot eff rot eff

By Bayes’ rule, the integrand can be written as

( ∣ ) ( ∣ ) · ( ) ( )µp P T t D p D P T t p P T t, , , , , , , 2rot eff rot eff rot eff

where the first term is the likelihood and the latter is the prior.

3.2. Likelihood

For the likelihood, we assume that the observed rotation
period and temperature have Gaussian uncertainties and are
measured independently. In this case,

( ∣ ) ( ˜ ∣ ) · ( ˜ ∣ ) ( )= P Tp D P T t p P T t p P T t, , , , , , , 3rot eff rot rot eff eff rot eff

and the temperature and rotation period distributions are
specified by ˜ ( )˜ s~T T , Teff eff

2
eff

and ˜ ( )˜ s~P P , Prot rot
2

rot
, where

 denotes the normal distribution. In other words, our
likelihood is a product of two normal distributions.

3.3. Prior

The prior is more interesting. By the chain rule,

( ) ( ∣ ) · ( ) · ( ) ( )=p P T t p P T t p T p t, , , , 4rot eff rot eff eff

where we have assumed p(Teff|t)= p(Teff) because, in our
model, changes in stellar temperature through time are ignored.
We assume that age and temperature are uniformly distributed,

Figure 1. Open cluster data and models. The top panel shows the data that we
aim to model, and the bottom panel focuses on the first gigayear. Gray lines in
the top panel show the mean model for the rotation period distribution and are
uniformly spaced at integer multiples of 100 Myr. They are evaluated using a
seventh-order polynomial for each cluster (colored lines, bottom panel) and
interpolated piecewise between those reference loci. The model is defined over
temperatures of 3800–6200 K and ages of 0.08–2.6 Gyr. Data behind the figure
are available as a machine-readable table.

(The data used to create this figure are available.)
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( )~t t t,min max and ( )~T T T,eff eff
min

eff
max , where ( )t t,min max

and ( )T T,eff
min

eff
max are the limiting ages and temperatures for our

model, respectively. We adopt limiting ages of 0–2.6 Gyr and
limiting temperatures of 3800–6200 K. The upper limit on age
is set by the oldest clusters in our data set (Table 1), and the
temperature limits are set to include the regions in which stellar
rotation is most correlated with age. While one might imagine a
prior on temperature informed by the stellar initial mass
function, or a prior on age informed by the star formation
history of the Milky Way, the star formation rate has been
approximately constant over the past 10 Gyr (e.g., Nordström
et al. 2004), and incorporating a stellar mass function would
systematically bias already accurate measurements toward
lower temperatures. We do not consider such additions.

The remaining term in Equation (4), p(Prot|Teff, t), is the
core of our model. We propose a functional form for
p(Prot|Teff, t) that relies on two components. The first
component, μslow(Teff, t), is the rotation period of the star
if it were exactly on the slow sequence—this is colloquially
the “mean” gyrochronal model for a star’s rotation period
prescribed at any age and temperature. The second comp-
onent is the residual to that mean model—the probability
distribution for how far the star’s rotation period is from the
slow sequence at any given age and temperature. This model
parameterization is motivated by how the observed abun-
dance of rapid rotators changes as a function of both stellar
temperature and age.

The Mean Model—To parameterize the slow sequence, we
fitted rotation periods in each reference cluster with an Nth-
order polynomial over 3800–6200 K. We manually selected the
slow-sequence stars to perform this fit using the data behind
Figure 1. We investigated the choice of N between 2 and 9, and
settled on N= 7 as a compromise between overfitting and
accurately capturing the structure of the Praesepe and NGC-
6811 sequences. While lower-order polynomials provide
acceptable fits for the 80–300Myr clusters (e.g., Curtis et al.
2020, Appendix A), for purposes of homogeneity across all
clusters, we adopted a single polynomial order.

To model the evolution of the slow sequence, we
considered a few possible approaches, all based on inter-
polating between the fitted polynomials (see Appendix A).
We ultimately chose at any given temperature to fit 1D
monotonic cubic splines in rotation period as a function of
age. This guarantees a smooth increase in the slow-sequence
envelope while also fitting all available data. Systematic
uncertainties associated with this choice are described in
Section 5.2. This procedure yielded the gray lines in
Figure 1. At times below 80 Myr, we do not extrapolate;
we instead let the “mean model” μslow(t, Teff) equal the
lowest reference polynomial rotation period values as set by
α Per. This yields posterior distributions that are uniformly
distributed at ages below 80 Myr. Possible options regarding
extrapolation for older stars are discussed in Appendix A.

The Residual—The top row of Figure 2 shows the residuals
for the calibration clusters with t� 670Myr, relative to the
polynomial model. Our ansatz is to model this distribution as a
sum of a Gaussian and a uniform distribution, with each
distribution smoothed around a time-dependent transition
location in effective temperature. This procedure ignores the
few positive outliers.

Mathematically, this means that the rotation period, given
the age and temperature, is drawn from

( ) ( ( ) )
( ) ( ) ( ( ( ) )) ( )





m s

m

~ Ä

+ Ä -

P a L T t k

a g t L T t k

, ,

0, 1 , , 5

P T

P T

rot 0 slow
2

eff
cut

0

1 slow eff
cut

1

where  is a normal distribution,  is a uniform distribution, a0
and a1 are scaling constants, and L(ℓ, k) is the logistic function
specified by a location ℓand smoothing scale k. Visual examples
are given in the middle row of Figure 2. The subscripts, for
instance P, indicate the dimension over which the distribution is
defined—period (P) or effective temperature (T), and ⊗ denotes
an outer product. We have also hidden the dependence of μslow on
time and temperature, for simplicity of notation.
The first term in Equation (5) parameterizes the slow sequence

using a Gaussian centered on μslow(t, Teff), with a universal width
σ= 0.51 days set by the observations of clusters at least as old as
the Pleiades. The location parameter of the logistic function,

( )T teff
cut , is a function that monotonically decreases to account for

the age-dependent transition between the slow and fast sequence.
While other functional forms are possible, we assumed that, at any
given time, this function is defined as the temperature of the
lowest-mass star that has just arrived at the main sequence,
because this is the time at which the star’s surface rotation rate is
no longer affected by gravitational contraction. We evaluated this
quantity through linear interpolation over the solar-metallicity
MIST grids (Choi et al. 2016). At 80, 120, and 300Myr, this
yielded Teff

cut values of 4620, 4150, and 3440 K, respectively.

3.4. Free Parameters

The free parameters in the model are as follows. In the
residual term, there are the amplitudes (a0, a1), the two scaling
parameters (k0, k1), and the slope of the linear amplitude
decrease g(t) for the “fast sequence” term through time. This
would yield five free parameters, but a0 and a1 are degenerate,
so there are really only four degrees of freedom. We fixed the
other terms in the model that could in principle be allowed to
vary. These included the polynomial terms in the slow-
sequence model μslow, the scatter around the slow sequence σ,
and the function specifying the decrease of the effective
temperature cutoff through time ( )T teff

cut .

3.5. Fitting the Model

To compare the model (Equations (1) through 5) to the data, we
performed the following procedure. For the reference clusters at
120Myr (Nå= 196), 300Myr (Nå= 133), and 670Myr (Nå= 100),
we divided the data into seven bins, starting at 3800K, with uniform
bin widths of 350K. Including αPer (80Myr; Nå= 65) as an
optional fourth data set yielded similar results, so we omitted it for
simplicity. In each bin, we counted the number of stars on the slow
sequence and the number of stars on the fast sequence. We
considered a star to be “slow” if it is within two days of the mean
slow-sequence model, and “fast” if it is more than two days faster
than the same model. This cutoff was determined based on the
uniform scatter of σ≈ 0.51 days seen around the slow sequence for
clusters with t� 120Myr. We then use the resulting counts to define
a “fast fraction,” F, the ratio of fast rotating stars to the total number
of stars observed in any given temperature bin.
The bottom row of Figure 2 shows this fast fraction as a

function of temperature. We calculated the same summary statistic
for our model through numerical integration. This yields a χ2
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metric, ( )c s= å -F F ,i i i i
2

,model
2 2 where the sum i is over the

three reference sets of open clusters. For the σi, the default
Poissonian uncertainties would disfavor the small number of stars
from 4500 to 6200 K in Praesepe that are all on the slow
sequence. Because auxiliary clusters with similar ages, such as the
Hyades (Douglas et al. 2019) and NGC-6811 (Curtis et al. 2019a),
also have fully converged slow sequences, we adopted a
prescription for the σi in which we set them to be equal to one
another at 120 and 300Myr and 10 times smaller at 670Myr. This
forces the model to converge to the fast sequence by the age of
Praesepe. The normalization of the uncertainties was then allowed
to float in order to yield a reduced χ2 of unity.

We fitted the model by sampling the posterior probability using
emcee (Foreman-Mackey et al. 2013). We sampled over five
parameters: a1/a0, lnk0, lnk1, the slope of g(t), and the
multiplicative uncertainty normalization. The function g(t) was
set to unity below 120Myr, and to decrease linearly to zero while
intersecting 300Myr at a particular value, yg. The latter value
was the free parameter used to fit the slope of the line. The
maximum-likelihood values yielded by this exercise were
{ } { }= - -a a k k y, ln , ln , 8.26, 4.88, 6.24, 0.671 0 0 1 g . To evaluate
the posterior, we assumed a prior on each parameter that was
uniformly distributed over a wide boundary.2 We checked
convergence by running the chains out to a factor of
300 times longer than the autocorrelation time. The

resulting median parameters and their 1σ intervals were
{ } { }= - --

+
-
+

-
+

-
+a a k k y, ln , ln , 9.29 , 4.27 , 6.15 , 0.631 0 0 1 g 2.41

3.62
1.52
2.56

0.25
0.23

0.07
0.03 .

The lower row of Figure 2 shows the best-fit model plotted
over 64 samples. Qualitatively, the model fits the fast fraction’s
behavior well in both temperature and time. To check the
accuracy of our uncertainties, we performed a cross-validation
analysis in which we randomly dropped 20% of the stars in the
reference clusters, without replacement, and then refitted the
data. The resulting parameters all fell within the stated 1σ
uncertainty intervals.

3.6. Evaluating the Posterior

For any given star, we numerically evaluate Equation (1) using
the composite trapezoidal rule. For each age in a requested grid, we
define linear grids in the dimensions of temperature and
y≡P−μslow, each with side length Ngrid. The integration is then
performed over dTeff and dy at each specified age. Runtime scales
as ( ) Ngrid , and it takes under a minute on a typical laptop.
However, this runtime estimate assumes that the four hyperpara-
meters, a a k k, ln , ln ,1 0 0 1 and yg, are fixed. Because these
parameters are unknown, the most rigorous approach for age
inference for any one star requires sampling from the posterior
probability distribution for the hyperparameters. Each sample then
yields its own posterior for the age from Equation (1), from which
subsamples can be drawn. All the subsamples can then be
combined to numerically yield a final posterior.

Figure 2. Data, model, and goodness of fit. Top: Cluster rotation periods, minus the corresponding slow-sequence mean model at each cluster’s age. The lower gray
envelope corresponds to a zero-day rotation period. Middle: Probabilistic model for rotation period as a function of age and temperature (Equation (5)), fitted to the
120 Myr, 300 Myr, and 670 Myr clusters. Bottom: Fraction of stars in 350 K bins that rotate “fast,” as a function of temperature. “Fast” and “slow” stars are squares
and circles on the top panel; “very slow” outliers are the crosses. “Slow” stars show a uniform scatter of σ ≈0.51 days around the mean model at t � 120 Myr. The
assumed uncertainties for Praesepe are smaller than the markers (see Section 3.5).

2 ( )~a a 1, 201 0 , ( )~ -kln 10, 00 , ( )~ -kln 10, 01 , ( )~y 0.1, 1g .
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The top panels of Figure 3 show the results of this sampling
procedure in dotted lines, plotted underneath an alternative:
simply adopting the best-fit model (solid lines). The results are
similar, although there are differences for most rapidly rotating
stars. While the sampling procedure is relatively simple to
parallelize, it is a factor of ≈103 times more expensive than using
the best-fit model; for most practitioners, the rigor is unlikely to
justify the runtime cost. As we will discuss in Section 5.2, this
model has other systematic uncertainties that are more important.

4. Results

4.1. Model Validation

(NOTE DURING EDIT1: This paragraph has been reworded
with an updated procedure. Quoted “recovered age” values in
the final column of Table 1 have also been updated using the
hierarchical Bayesian framework.) As a validation test, we

calculated gyrochronal age posteriors for all 3800–6200 K stars
in Figure 1. To infer the implied age for each cluster, we
“stack” the posteriors using PosteriorStacker,3 which
considers two hierarchical Bayesian models for the intrinsic age
distribution of each cluster: a Gaussian and a nonparametric
histogram. After omitting a few extreme outliers,4 the two
approaches give similar results, and so in the “recovered age”
column of Table 1, we report the median and uncertainty of the
mean cluster age, assuming that the individual stellar ages in
each cluster are drawn from a Gaussian. The resulting ages

Figure 3. Precision of gyrochronal ages from our method. Top: Age posteriors across rotation–temperature space. In each subplot, each line represents a pair of Prot

and Teff, and assumes a precision of 50 K in effective temperature and 1% in rotation period. The solid lines come from the best-fit model in Figure 2. The underplotted
dotted lines come from a more rigorous approach that samples over the population-level hyperparameters discussed in Section 3.6. Bottom: +1σ (left) and −1σ
uncertainty (right) of the age posterior, normalized by the median value. For instance, “±1σt/median(t) = 0.3” corresponds to 30% relative precision. Thick gray lines
are at integer multiples of 500 Myr, and dotted lines are spaced every 100 Myr; labels are in units of gigayears.

3 See github.com/JohannesBuchner/PosteriorStacker, and Appendix A of
Baronchelli et al. (2020). This approach is viable because gyro-interp
adopts a uniform prior over age, and so the hierarchical likelihood simplifies to
a product of the likelihoods for each star.
4 TIC 44647574 in Psc-Eri; EPIC 212008710 in Praesepe; KIC 5026583 and
KIC 5024122 in NGC-6819; and EPIC 219774323 in Ruprecht-147.
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agree with the literature ages for every cluster to within 2σ, as
we would expect for a sample of 10 clusters.

As an additional test, we repeated the exercise, but using
data for two open clusters outside of our training data: M34
(≈240Myr; Meibom et al. 2011) and M37 (≈500Myr;
Hartman et al. 2009). For M34, fitting the data after applying
the binarity filters described in Section 2.3 yielded an age of
222± 20Myr. For M37, the same procedure yielded
463± 18Myr. The latter estimate agrees with the isochronal
age found by Hartman et al. (2008) without convective
overshoot (485± 28Myr), and is 2.5σ below their isochronal
age that included convective overshoot (550± 30Myr).

4.2. Precision of Gyrochronology

Having demonstrated that our method can recover the ages
of known cluster stars, here we examine its statistical limits for
individual field stars. The bottom panel of Figure 3 shows the
±1σ uncertainties, normalized by the median of the gyrochro-
nal age posteriors, over a grid of rotation periods and
temperatures. Broadly speaking, the regions in which rotation
periods evolve the least, such as the hottest stars and stalled
≈1 Gyr K dwarfs, have the worst inferred precisions.

The top panel of Figure 3 visualizes vertical slices of the
bottom panel for a few canonical cases. For a Sun-like star
(≈5800 K) in its early life, the rotation period is only
informative in that it provides an upper limit on the star’s
age. As the star ages, the age posterior becomes two-sided, with
a best-case statistical precision of±12% at 2 Gyr. For a low-
mass K-dwarf, the evolution of the age posterior is more
complicated. These stars only converge to the slow sequence
by the age of Praesepe. Their spin-down is then observed to
stall, which leads to highly asymmetric posteriors between ages
of 0.5–1.3 Gyr. For instance, a 4000 K star on the slow
sequence at 200Myr has a +1σ uncertainty of 88% and a −1σ
uncertainty of 13%. Nonetheless, statistical age precisions for
such stars are predicted to improve after the era of stalled spin-
down, reaching± 9% by 2 Gyr. The implication is that the
rotation periods of such stars can be predictive of age, but only
at certain times.

5. Discussion and Conclusions

5.1. The Gyrochronal Precision Floor

A key simplifying factor in our analysis is that we assumed
the scatter of rotation periods around the slow sequence,
σ≈ 0.51 days, is fixed in time. Based on the data, σ appears to
be constant between 120Myr and 1 Gyr (Figure 2, top panel).
In α Per, the scatter is larger (0.85 days), likely because the
stars are only just converging to the slow sequence. The scatter
is also larger in the Ruprecht-147 data, but this is likely due to
observational uncertainty in the period measurements. This
empirical ≈0.51 day scatter could come from a number of
sources, including differential rotation on stellar surfaces
(Epstein & Pinsonneault 2014), uncertainties in the effective
temperature scale, or differing wind strengths between stars of
the same mass and age.

Regardless of the scatter’s origin, it sets the floor for
gyrochronal precision, in tandem with the intrinsic spin-down
rates. In line with previous results (Barnes 2007), gyrochronal
ages for F-dwarfs are less precise than for G-dwarfs, because
F-dwarfs spin down more slowly. However in detail, Figure 3
shows that such statements depend on both mass and age. More

broadly, Figure 3 also implies that accounting for the evolving
dispersion of the rotation period distributions is a required
ingredient for producing accurate age uncertainties.

5.2. Systematic Uncertainties

The uncertainties described thus far have been statistical,
rather than systematic. Key systematic uncertainties include the
time-varying nature of the spin-down rate, the accuracy of the
absolute age scale, and stellar binarity.
Regarding the spin-down rate, our interpolation approach

guarantees accuracy near any given reference cluster. However,
far from the reference clusters, the choice of interpolation
method can affect the inferred ages. We estimated the
associated systematic uncertainties by evaluating grids of Prot

versus Teff analogously to Figure 3, but assuming (i) piecewise
linear interpolation and (ii) piecewise cubic hermite interpolat-
ing polynomials calibrated only on the 0.08–2.6 Gyr data (see
Appendix A). The difference in the medians of the age
posteriors relative to our default interpolation method is an
indicator of the systematic uncertainty. This procedure showed
a <1% bias in the inferred ages for 5000–6200 K stars younger
than 1 Gyr, due to the dense sampling of the calibration
clusters. For cooler stars, however, a linear spin-down rate
would yield differences of up to± 15% in the median age, due
to the rapid spin-down from 0.1 to 0.3 Gyr (see Figure 1). For
older stars between 1 and 2.6 Gyr, the cubic interpolation
yielded±100Myr differences, while the linear interpolation
yielded −200 to +50Myr differences, with the largest
differences again for stars cooler than 4500 K. The summary
is that, from 1 to 2.6 Gyr, there is a 6%–12% systematic
uncertainty, with the maximum uncertainty at 1.8 Gyr, halfway
between the two reference clusters.
Regarding the absolute age scale, Table 1 reports age

precisions for the calibration clusters of 3%–20%, with the
largest uncertainties for the 300± 60Myr NGC-3532 and
Group-X. To assess how shifts in this scale might affect our
gyrochronal ages, we again calculated grids of Prot versus Teff,
but in this case we shifted all the reference cluster ages by
either +1σ or −1σ. The results showed what one would
naively expect: if all the clusters are±1σ older than their
reference ages, then the changes in the inferred ages match
however much freedom there is in the local age scale. For
example, for a 5800 K star with a 5.1 day rotation period, our
method statistically yields = -

+t 308 81
70 Myr, roughly the age of

NGC-3532. However, the age of that cluster is uncertain at the
20% level, and so the median age from our estimate for this
worst-case scenario could be systematically shifted either up or
down by±20% to match the true age of the reference cluster.
From the uncertainties quoted in Table 1, and from comparable
studies in the literature (e.g., Dahm 2015), the age scale itself
seems to currently be defined at a ∼10% level of accuracy,
at best.
Finally, regarding binarity, the presence of even a wide

binary during the pre-main sequence can prompt fast disk
clearing, which could alter a star’s rotation period by halting
disk locking (Meibom et al. 2007). This mechanism might
explain the abundance of fast rotators in ≈120Myr open
clusters (Bouma et al. 2021). A separate concern with binaries
is photometric blending of the rotation signal. Because of these
issues, our framework is only strictly applicable to stars that are
apparently single. Section 2.3 summarizes some of the
information that can be used to determine whether a given
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field star meets this designation. Appendix B discusses the
potential impact of ignoring binarity entirely.

5.3. Future Directions

The need for intermediate-age calibrators—The region of
Figure 1 with the largest gap, near 1.8 Gyr, has the largest
systematic uncertainties in our model. These uncertainties
could be addressed by measuring rotation periods in a cluster at
this age. Considering clusters from Cantat-Gaudin et al. (2020)
older than 1 Gyr, within 1 kpc, and with more than 100
members yields eight objects. Sorted from near to far, they are:
Ruprecht-147, NGC-752, IC-4756, NGC-6991, NGC-2682,
NGC-7762, NGC-2423, and IC-4561. The closest two have
been studied by Curtis et al. (2020) and Agüeros et al. (2018),
though rotation periods in NGC-752 (1.34± 0.06 Gyr, d∼ 440
pc) could be worth revisiting using data from the Transiting
Exoplanet Survey Satellite and the Zwicky Transient Facility.
IC-4756 and NGC-6991 could similarly merit further study,
though it would be wise to confirm their ages before delving in
a rotation period analysis.

Going older and going redder—M67 (4 Gyr) will likely be
the next rung in the gyrochronology ladder: the analyses by
Barnes et al. (2016) and Dungee et al. (2022) have nearly
completed its rotation–color sequence. As described in
Appendix A, we used their data on M67 to calibrate the rate
of spin-down between 1 and 2.6 Gyr. This choice is connected
to a generic issue with interpolation-based methods: the
systematic uncertainty in the model increases near the
boundaries of the interpolation domain. By this logic,
incorporating the 4 Gyr data in the most reliable way would
require an even older population of stars. Clusters such as
NGC 6791 (8 Gyr; Chaboyer et al. 1999), or else a precise set
of asteroseismic calibrators (e.g., van Saders et al. 2016) might
be the most plausible paths toward the goal of going older,
though the complicating effects of stellar evolution for F and G
dwarfs bear consideration. For M dwarf gyrochronology (e.g.,
Gaidos et al. 2023), the existence of a slow-sequence for M67
implies that the M-dwarfs do eventually converge to a slow
sequence; future studies should aim to determine when exactly
this occurs.

Precision age dating of field stars—The best way to
demonstrate the reliability of a star’s age is to measure it
using independent techniques. One framework that we expect
to complement our own is the BAFFLES code (Stanford-Moore
et al. 2020), which returns age posterior probabilities based on
a star’s surface lithium content. Other age-dating tools,
including activity (Ca HK, Ca IRT, x-ray, and UV excess),
isochrones, and asteroseismology, can similarly be combined
with our gyrochronal posteriors to verify the accuracy of our
rotation-based ages and to improve on their precision.

Angus et al. (2019) presented an important step in this vein,
through a method that simultaneously fitted an isochronal and
gyrochronal model to determine a star’s age. Their statistical
framework could certainly encompass the model developed in
this manuscript. The main advantages of our particular
gyrochronology model, however, are (i) improved accuracy
for stalling K dwarfs, (ii) improved accuracy in treating the
growth of the slow sequence and decay of the fast sequence
over the first gigayear, and (iii) incorporation of the
astrophysical width of the slow sequence for FGK stars. The
main disadvantage is that our model is not applicable beyond
2.6 Gyr, though we caution that this is because the calibration

data are more sparse in this regime, and so the ages have larger
systematic uncertainties.
Physics-based models—A separate issue with our model is

that it is empirical, and so it does not yield physical
understanding. Physics-based gyrochronology models have
provided crucial insight into what gives the data in Figure 1
their structure. The relevant physics likely includes decoupling
between the radiative core and convective envelope (Gallet &
Bouvier 2013), angular momentum transport to recouple the
core and envelope (Gallet & Bouvier 2015; Spada &
Lanzafame 2020; Cao et al. 2023), and spin-down rates that
vary depending on whether the magnetic dynamo is saturated
(e.g., Sills et al. 2000; Matt et al. 2015). At older ages,
additional physics may well be needed to explain the lethargic
spin-down of stars with Rossby numbers comparable to the Sun
(Brown 2014; van Saders et al. 2016; David et al. 2022). A
separate issue that also merits attention is the exact role of
binarity on stellar rotation. Our filtering process (Section 2.3)
removed potential binaries based on a gamut of tracers, because
observations have shown that rapid rotators are often binaries
(Meibom et al. 2007; Stauffer et al. 2016; Gillen et al. 2020).
The exact properties of these binaries—for instance, their
separations and masses—would help in clarifying the physical
origin of this correlation. The issue of whether binarity leads to
early disk dispersal seems likely to be related, and it also
deserves attention (Cieza et al. 2009).

This work was supported by the Heising–Simons 51 Pegasi b
Fellowship (LGB) and the Arthur R. Adams SURF Fellow-
ship (EKP).
Facilities: Gaia (Gaia Collaboration et al. 2022), Kepler

(Borucki et al. 2010), TESS (Ricker et al. 2015), NGTS
(Wheatley et al. 2018).

Appendix A
Interpolation Methods and Literature Comparison

How does the slow sequence evolve between each reference
cluster? In other words, what is the functional form of μslow(t,
Teff), the rotation period of a star evolving exactly along the
slow sequence? Figure 4 summarizes a few possible answers,
evaluated at 5800 K, 5000 K, and 4200 K. Data from Barnes
et al. (2016) and Dungee et al. (2022) have been included as the
4 Gyr M67 data points, to assess how well the interpolation
methods succeed at extrapolating beyond 2.6 Gyr. As a
qualitative note, the stars of interest in this work
(0.5–1.2Me; 3800–6200 K) have temperature changes of
2.5% between 80Myr and 2.6 Gyr, according to the MIST
grids (Choi et al. 2016). Past ≈3 Gyr, the most massive 1.2Me
(≈6200 K) stars begin to turn onto the subgiant branch, and
temperature becomes a more ambiguous parameter when
modeling stellar spin-down.
The simplest plausible model would be if the slow

sequence’s evolution followed a power law, with a flexible
color or temperature calibration similar to that suggested by
many authors (e.g., Skumanich 1972; Noyes et al. 1984;
Barnes 2003). In this approach, for every temperature, we
would set Prot∝ t n, where canonically n= 1/2. We would then
scale based on some fiducial rotation period, say at 120Myr.
Figure 4 shows how well this type of scaling works, letting n
float in order to match the data as well as possible. For Sun-like
stars (≈5800 K), this type of scaling works surprisingly well,
yielding agreement with the cluster data at the <15% level for
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n= 0.47 out to 4 Gyr. The agreement is significantly worse for
lower-mass stars, due to their stalled spin-down at intermedi-
ate ages.

An alternative approach would be to directly interpolate
between the cluster sequences, ignoring our expectation for any
kind of power-law spin-down. The resulting linear and
quadratic interpolation cases are shown as the dotted and

dotted–dashed lines in Figure 4. While these approaches
tautologically fit the data, they suffer from sharp transitions in
the spin-down rate at every reference cluster. Quadratic
interpolation is also not guaranteed to be monotonic, which
is probably a desirable property for a stellar spin-down. A final
concern is that interpolating in this way is not guaranteed to be
predictive; leaving the M67 data out, extrapolating based on the

Figure 4. Different approaches for interpolating between reference clusters. Prot denotes the rotation period of the star if it were evolving exactly along the slow
sequence. The top two and bottom two rows show identical data, but are scaled logarithmically and linearly in time. The “residual” is defined vs. the pchip_m67
interpolation method, calculated for each model i as (Prot,i − Prot,pchip_m67)/Prot,i. The “+” data points are evaluated from polynomial fits to the data in Figure 1. The
fixed power laws (“skumanich_fix_n_0.XX”) are extrapolated based on the rotation period at 120 Myr. MH08: Mamajek & Hillenbrand (2008). A19: Angus
et al. (2019). SL20: Spada & Lanzafame (2020).
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1–2.6 Gyr data will generally over- or underestimate the
rotation periods in the 2.6–4 Gyr interval.

An approach closer to interpolation that still incorporates a
form of power-law scaling is as follows. For a point (Ti, Pi)
intermediate between the loci of two clusters with ages t0 and t1
and rotation periods P0 and P1 at the same temperature Ti, set

( )
( )

( )= =P P
t

t
n

P P

t t
, for

log

log
. A1i

i
n

0
0

1 0

1 0
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In other words, given the full set of reference loci {μ0,
μ1,K,μk}, their ratios {μ1/μ0,K,μk/μk−1} can be used to
define power-law scalings that are accurate at a piecewise level.
While this tautologically fits the data, there is a concern that,
for cool stars older than 1 Gyr, it may overestimate the rotation
periods. This concern is primarily based on the sharp transition
visible in Figure 4 in the spin-down rate at 1 Gyr for the
4200 K case.

A final approach is based on PCHIP interpolation (Piecewise
Cubic Hermite Interpolating Polynomials; Fritsch & Butland
1984). This approach is monotonic, and continuous in the first
derivatives at each reference cluster. While it is interpolation-
based, and therefore not predictive outside of its training
bounds, we can include the M67 data in order to define the
most accurate possible slow-sequence evolution over the
1–2.6 Gyr interval. The results are shown with the black line in
Figure 4 in the method labeled “pchip_m67,” which we adopt
as our default. This approach leaves the slope of Prot versus t
even less constrained in the 2.6–4 Gyr interval, which is why

we do not advocate using our model for stars older than
2.6 Gyr.
Finally, the models from Mamajek & Hillenbrand (2008)

(MH08), Angus et al. (2019) (A19), and Spada & Lanzafame
(2020) (SL20) are also shown in Figure 4 for comparison. The
MH08 model is defined over 0.5< (B− V )0< 0.9, or roughly
5050–6250 K. The Teff= 5000 K case is therefore a mild
overextrapolation, but we nonetheless show the result for
illustrative purposes. Of the three cases, the Spada &
Lanzafame (2020) model generally provides the best match
to the data.

Appendix B
What if we Ignored Binarity?

In this work, we argued that omitting binaries from
gyrochronology analyses is important due to the observational
and astrophysical biases that they can otherwise induce on
rotation periods. In Section 2.3, we described the set of quality
filters that we used to expunge binaries from our calibration
data, to guarantee that we were considering only apparently
single stars with reliable rotation period measurements. For
generic field stars, not all of these conditions are necessarily
applicable. For instance, outliers in color–absolute magnitude
diagrams might be challenging to identify, due to the lack of an
immediately obvious reference sequence (although the locus of
the main sequence is itself well-known, and Gaia for instance
can now be used to query local spatial volumes around

Figure 5. What if we loosened the quality cuts? This plot is the same as Figure 2, but systems that are known or suspected to be visual, photometric, astrometric, and
spectroscopic binaries are now displayed along with the single stars. The model is the same as in Figure 2, as is the panel ordering.
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arbitrary field stars to construct well-defined reference
samples).

In general, we strongly recommend applying our method
only to stars that are thought to be single and on the main
sequence. For instance, spectroscopic surface gravity estimates
should be used, if available, to expunge evolved stars because
they are not in our calibration data. Nonetheless, it is interesting
to consider how well our method translates for samples that are
messier, as well as those that have binarity rates in line with
field populations. Figure 5 shows the result of dropping all of
the quality cuts described in Section 2.3, using the data
included behind Figure 1.

The first noticeable effect is that, without any quality cuts,
there are more stars. The star count in α Per jumps from 65 to
128; in the 120Myr clusters from 196 to 364, in the 300Myr
clusters from 133 to 301; and in Praesepe from 100 to 250. In
addition, without quality cuts, the width of the slow sequence
increases. The mean residual width for the t� 120Myr stars
within 2 days of the slow sequence is 0.72 days, a 40% increase
from σ= 0.51 days observed in the cleaned sample. This
scatter term is proportional to the statistical age uncertainty at
late times, in the regime of very precise rotation period and
temperature measurements (Barnes 2007). This suggests that, if
one wished to apply our gyrochronology model to a population
with a mixture of single and binary stars, the model would need
to be refit to account for the wider intrinsic scatter in such a
population.

Finally, we can ask to what degree the ratio between fast and
slow rotators changes when we omit all quality cuts. The
results are shown in the bottom row of Figure 5, and compared
against the original best-fit model (trained on the cleaned data)
from Figure 2. While the visual agreement remains good at
t� 120 Myr, the hot stars in the raw α Per sample have a larger
fast fraction than in the cleaned sample, and so the model
provides a worse match to those stars. A second qualitatively
important difference is present in Praesepe: the raw data show
around a dozen rapid outliers, none of which are present in the
cleaned data set (Figure 2). If any of these stars were single and
rapidly rotating, we might construe them as motivation to
lengthen our model’s timescale for the decay of the fast
sequence. However, they are most likely binaries, and the
Hyades similarly shows no evidence for rapidly rotating single
stars hotter than 3800 K (Douglas et al. 2019). The NGC-6811
data at 1 Gyr similarly have no reported rapid rotators (Curtis
et al. 2019a). We therefore simply note that these outlying stars
do exist at 0.7 Gyr, and that practitioners aiming to perform
gyrochronology analyses on populations of stars that include
binaries should consider them.
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