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Abstract

We present a new reconstruction of the Event Horizon Telescope (EHT) image of the M87 black hole from the
2017 data set. We use PRIMO, a novel dictionary-learning-based algorithm that uses high-fidelity simulations of
accreting black holes as a training set. By learning the correlations between the different regions of the space of
interferometric data, this approach allows us to recover high-fidelity images even in the presence of sparse
coverage and reach the nominal resolution of the EHT array. The black hole image comprises a thin bright ring
with a diameter of 41.5± 0.6 μas and a fractional width that is at least a factor of 2 smaller than previously
reported. This improvement has important implications for measuring the mass of the central black hole in M87
based on the EHT images.

Unified Astronomy Thesaurus concepts: Black hole physics (159); Black holes (162); Supermassive black holes
(1663); Long baseline interferometry (932); Principal component analysis (1944)

1. Introduction

The Event Horizon Telescope (EHT) 2017 observations
provided high-sensitivity data over long baselines and resulted
in the first horizon-scale images of the black hole in M87
(Event Horizon Telescope Collaboration et al.
2019a, 2019b, 2019c, 2019d, 2019e, 2019f) and of Sagittarius
A*, the Galactic Center black hole (Event Horizon Telescope
Collaboration et al.
2022a, 2022b, 2022c, 2022d, 2022e, 2022f). The exceptional
resolution achieved by the EHT is made possible by an array of
telescopes spanning the Earth and operating as a very long
baseline interferometer (VLBI; Event Horizon Telescope
Collaboration et al. 2019b, 2019c). Despite this global reach,
the sparse interferometric coverage of the EHT array
(especially during the 2017 observations that have been used
for all of the publications to date) makes the already complex
problem of interferometric image reconstruction particularly
challenging. In such situations, special care is needed to assess
the impact of imaging algorithms and sparse interferometric
data on the final set of images that can be reconstructed from it.

A cornerstone of the EHT data analysis strategy was the use
of several independent analysis methods, each with different
priorities, assumptions, and choices, to ensure that the EHT
results were robust to these differences. The use of several
general-purpose imaging algorithms, for example, was moti-
vated by a desire to reconstruct an image that was consistent
with the EHT data while remaining model-agnostic. Those
algorithms did not assume ring-like images and could easily
have reconstructed a broad range of morphologies. Extensive
care was taken by the EHT collaboration to rigorously
demonstrate that the ring morphology was uniquely required
by the data (Event Horizon Telescope Collaboration et al.
2019d).

The robustness of the ring-like shapes of the images
generated with model-agnostic methods motivates the use of
principal-component interferometric modeling (PRIMO), a
novel image-reconstruction algorithm that addresses the
challenges of millimeter-wave interferometry with sparse
arrays by training the algorithm on an extensive suite of
simulated images of accreting black holes (Medeiros et al.
2023). In this approach, we apply principal components
analysis (PCA) to a large library of high-fidelity, high-
resolution general relativistic magnetohydrodynamic
(GRMHD) simulations and obtain an orthogonal basis of
image components. PRIMO then uses a Markov Chain Monte
Carlo (MCMC) approach to sample the space of linear
combinations of the Fourier transforms of a number of PCA
components while minimizing a loss function that compares the
resulting interferometric maps to the EHT data (see Medeiros
et al. 2023 for details on PRIMO and Medeiros et al. 2018 for
an earlier exploration of PCA applied to GRMHD simulations).
General-purpose imaging algorithms, such as those used in

prior EHT publications, rely on regularizers that, e.g.,
maximize entropy, minimize gradients, require positivity,
and/or prefer compact sources, in order to fill the regions of
the Fourier domain where there are no data. In contrast, PCA
finds correlations between different regions in Fourier space in
the training data, which allows PRIMO to generate physically
motivated inferences for the unobserved Fourier components.5

The PCA components themselves contain both positive and
negative values. Even though we do not impose positivity on
the final image, it emerges naturally in the PRIMO
reconstructions.
In machine-learning terms, the use of PCA to characterize

the GRMHD training set as a sparse orthogonal basis is an
example of dictionary learning (see, e.g., Shao et al. 2014 for a
review of dictionary learning applied to image denoising).
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5 Note that, although we perform PCA in the image domain and then take the
Fourier transform of the components, the result would have been identical had
we performed PCA on the Fourier transform of the images directly (Medeiros
et al. 2018).
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Although, in general, decompositions used for dictionary
learning do not need to be orthogonal or sparse, PCA does in
fact lead to such a decomposition and enables an efficient
dimensionality reduction, i.e., requiring a small number of
components to fit the data.

In this Letter, we employ PRIMO to reconstruct the image of
the black hole in the center of the M87 galaxy based on the
2017 EHT data. As our training set, we use the simulation
library and PCA basis employed in Medeiros et al. (2023) that
was based on over 30,000 high-resolution images with a broad
range of image morphologies (the resolution of the simulated
images is 0.5 μas, high enough to avoid deleterious aliasing
effects; see Psaltis et al. 2020). We present the set of images we
obtain with this approach and compare them to those
reconstructed with agnostic general-purpose imaging
algorithms.

2. PRIMO Analysis of 2017 M87 Data

The data we use in this analysis consist of the EHT
observations of M87 taken on April 5, 6, 10, and 11 of 2017.
These observations included seven stations at five geographic
locations: the Atacama Large Millimeter/submillimeter Array,
Atacama Pathfinder Experiment telescope, the James Clerk
Maxwell Telescope, the Submillimeter Array, the Arizona
Radio Observatory Sub-Millimeter Telescope, the IRAM 30m,
and the Large Millimeter Telescope Alfonso Serrano. We
choose the April 11 observations as our fiducial data set
because it contains a high number of scans as well as good
baseline coverage (note that April 5, 6, 10, and 11 contained
18, 25, 7, and 22 scans, respectively).

Although the data set used for the analysis was first
published in Event Horizon Telescope Collaboration et al.
(2019a, 2019b, 2019c, 2019d, 2019e, 2019f), the EHT
collaboration performed additional calibration of the 2017 data
prior to the publications on the Galactic Center black hole
(Sagittarius A*, Sgr A*, Event Horizon Telescope Collabora-
tion et al. 2022a, 2022b, 2022c, 2022d, 2022e, 2022f). We use
this most recent version of the 2017 data, scan averaged and
a priori calibrated, throughout the manuscript. Because of the
a priori calibration, we use gain priors that are peaked at unity
with a width of only 10%. We fix the zero-baseline flux to be
0.6 Jy for consistency with previous EHT analyses, which
argued that only a fraction of the observed zero-baseline flux
could be attributed to the compact source and the rest was due

to extended emission that is not part of the reconstructed image
(see the discussion in Appendix B of Event Horizon Telescope
Collaboration et al. 2019d).
PRIMO optimizes for the ratio of the amplitudes of PCA

components to the amplitude of the first component (a total of
N-1 parameters where N is the number of PCA components
used in the reconstruction), an overall size scaling of all
components, and an overall rotation of the components on the
plane of the sky (f). The size scaling of the image is expressed
in terms of the dimensionless mass-to-distance ratio
θg≡GM/Dc2, where G is Newton’s gravitational constant, c
is the speed of light, M is the mass of the black hole, and D is
the distance to the black hole.
All images in the training set have the same black hole spin

axis, which we assumed to be aligned with the large-scale jet
that is observed at longer radio frequencies, pointing toward us
at ∼17° away from the line of sight (see Walker et al. 2018).
However, we include the possibility of the spin axis pointing
away from us at 17° by allowing for an overall mirroring of the
PCA components, i.e., both clockwise and counterclockwise
accretion flow rotations are included in our model. In Medeiros
et al. (2023), we show that this basis can accurately reconstruct
simulated images of black holes with a spin magnitude that is
different from the training set, illustrating both the versatility of
the training set as well as the small effect of spin on image
morphology.
We blur our training set of simulated images before

performing PCA so that the decomposition is not overwhelmed
by small-scale structures that the EHT is not sensitive to. In
other words, blurring ensures efficient dimensionality reduc-
tion. We use a Butterworth filter with n= 2 and a scale
r= 15 Gλ, such that the resulting suppression in the visibility
amplitude at baseline lengths the EHT observes is only ∼1%
and, therefore, smaller than the systematic errors in the
measurements (see Butterworth 1930; Psaltis et al. 2020;
Medeiros et al. 2023 for details). This scale of the filter leaves
the training set with some power at baselines longer than those
of the observations.
The level of resolution in the images obtained with PRIMO

depends partially on the number of PCA components used for
image reconstruction. We choose 20 based on the optimization
performed in Medeiros et al. (2023), who used several different
synthetic data sets and showed that reconstructions with 20
components yield results that are both accurate (minimal

Figure 1. (Left) EHT image of the black hole in the center of M87 based on 2017 data, as reported in Event Horizon Telescope Collaboration et al. (2019a). (Middle)
Result of reconstructing the image by applying PRIMO to the same data set. (Right) The PRIMO image blurred to the resolution of the EHT array. The diameter of the
ring of emission, the north–south brightness asymmetry, and the central brightness depression are present in all images. The PRIMO image offers a superior utilization
of the resolution and dynamical range of the EHT array.
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biases) and reliable (minimal spurious features), even when the
synthetic data originates from simulations with parameters that
are distinct from the training set.

The center panel of Figure 1 shows the image reconstructed
with a linear combination of 20 PCA components with PRIMO
from 2017 April 11 EHT data of M87. The left panel in the
same figure shows the image published in 2019. The salient
image features, i.e., the presence of a bright ring of emission
and a central brightness depression, the ring size, and the
north–south brightness asymmetry are consistent between the
two images. The image in the left panel was blurred with a
20 μas Gaussian kernel to mimic the finite resolution of the
array. In order to represent the effects of the nominal EHT
resolution on the PRIMO image, we apply a n= 2, r= 8 Gλ
Butterworth filter to the fiducial image and show the result in
the right panel. Contrary to the Gaussian kernel, which
suppresses power at intermediate baselines with high signal-
to-noise EHT data, the Butterworth filter suppresses power
only at baselines where there are no data and approximates
more faithfully the maximum resolution of the EHT 2017 array
(Psaltis et al. 2020).

The striking difference between the left and right panels of
Figure 1 is the substantially narrower width of the ring and the
ability to discern finer features in the PRIMO image. The
improved resolution is due to the combination of our use of
machine learning to fill in Fourier space as well as our use of a
Butterworth filter instead of a Gaussian filter to blur the image.
PRIMO can recover accurate images down to the nominal
resolution of the array, where the interferometric data are
particularly sparse, because it learns the correlations between
the low-frequency and high-frequency structure from the
simulations.

In Figure 2 we compare the EHT data to Fourier amplitudes
and closure phases of the highest-posterior image obtained with
PRIMO. The match of the PRIMO reconstruction to the
observations is excellent, with little structure present in the
residuals. Negative values in the highest-posterior image are at
the noise level and the total negative flux is only about 1% of
the total flux. The theoretical error bars represent the
uncertainty introduced by truncating the PCA basis to only
20 components and have been reported in Medeiros et al.
(2023, see Figure 8 and Section 3.5).

Figure 3 compares the MCMC posterior distribution of the
amplitudes of several PCA components to their respective
priors. The posterior distributions of the PCA amplitudes of the
low-order components are constrained more tightly than the
priors, indicating that the amplitudes of the PCA components
are well constrained by the data. For the higher-order
components, the widths of the posteriors become closer to
those of the priors, demonstrating the diminishing power of the
data to constrain those low-variance components and justifying
our truncation of the PCA basis.

3. Parameter Study

The fiducial PRIMO image of M87 using the 2017 EHT data
discussed in the previous section sets the total flux of the
compact source to 0.6 Jy, and reconstructs the image with a
linear combination of 20 PCA components. In Figure 4 we
compare our fiducial image to those obtained with different
total compact source flux and different numbers of PCA
components. The main image features, i.e., the presence and
size of the ring, the presence and depth of the brightness

depression, and the orientation angle of the brightness
asymmetry along the ring are robust to changes in both the
total compact flux and the number of PCA components used.
All fits prefer a black hole spin axis pointing away from the
observer at 17° away from the line of sight, consistent with the
results of Event Horizon Telescope Collaboration et al.
(2019e).
The extended feature toward the bottom of the fiducial image

is present in several of the fits in Figure 4, but is not robust to
changes in the number of PCA components. The bottom row of
Figure 4 shows three example images randomly drawn from
the top 50th percentile of the MCMC chains of the fiducial
reconstruction. The relative brightness of this feature is
different between these images, indicating a significant
uncertainty. Although this feature may be real, and would be
consistent with features commonly seen in simulations, it is not
required by the data. The relative brightness of the brightest
part of the ring and its position angle are also weakly
constrained. This uncertainty arises from the sparse baseline
coverage of the 2017 EHT array, which makes constraining the
precise azimuthal structure challenging (see, e.g., Figure 3 of
Psaltis et al. 2022 and the accompanying discussion). Such
differences are also in images obtained with other algorithms
with the same data set (see, e.g., Figures 4, 6, 7, and 8 of Event
Horizon Telescope Collaboration et al. 2019d). Critically,
however, the ring size and width are robust in all PRIMO
images, and the ring is always brighter toward the south, owing
to the tight constraints from the closure phases measured in the
smallest baseline triangles.
We also reconstructed images with 20 PCA components

from the EHT observations taken on April 5, 6, and 10, setting
the total compact flux to 0.6 Jy. The baseline coverage of April
10 is significantly poorer than that of the other days, with April
6 and 11 having the best coverage (see, e.g., Figure 1 in Event
Horizon Telescope Collaboration et al. 2019d). PRIMO can
reconstruct high-resolution images of all days (see Figure 5),
with relatively minor changes between days. The orientation
angle of the brightest part of the ring, the relative ring
brightness asymmetry, and the brightness and location of the
southern extended feature are slightly variable between days.
Some of these changes can be attributed to the difference in
baseline coverage and errors, as discussed earlier. However,
some real differences between closure-phase data of the first 2
days and the last 2 were identified in Event Horizon Telescope
Collaboration et al. (2019d; see, e.g., Figure 3). Therefore, we
conclude that the differences between the first two and the last
two images, such as the changes in orientation angle of the
brightest part of the ring and the ring brightness asymmetry, are
likely caused by observed differences in the source structure.

4. Discussion

We present a new image reconstruction of the M87
supermassive black hole based on PRIMO, which uses
dictionary learning to correct for the sparse Fourier-domain
coverage of the EHT interferometric visibilities. This approach
relies on using a large library of synthetic images from general
relativistic magnetohydrodynamic simulations of accreting
supermassive black holes as a training set. It optimizes the
benefits of an agnostic image reconstruction technique by
remaining flexible enough to reproduce a broad range of
morphologies while using physically motivated training (as
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opposed to ad hoc regularizers) to infer the maximum
information from the data.

The image of the M87 black hole that we have reconstructed
with PRIMO is dominated by a narrow ring that has a
substantial brightness depression at its center and a rim that is
brighter toward the south. The ring-like shape is a consequence
of the observed dependence of the interferometric visibility
amplitudes on baseline length. As the top panel of Figure 2
shows, this dependence has the characteristic shape of a Bessel
function, which is the Fourier transform of a ring-like image.
For an infinitesimally thin ring, the baseline length b1;3.75 Gλ
that corresponds to the first visibility amplitude minimum is
directly related to the diameter of the ring as

d
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In order to measure directly the diameter of the ring-like images
reconstructed here with PRIMO, we randomly sampled 1750
steps from the PRIMO MCMC chains of the fiducial image and

applied the CHARM feature extraction algorithm (Event Horizon
Telescope Collaboration et al. 2022f; Özel et al. 2022). We find
the ring diameter to be 41.5± 0.6 μas, which is in good
agreement with the estimate based on Equation (1). Naturally,
the measured image diameter we report here also falls within
the range of 39–45 μas inferred using other imaging and
visibility-domain model fitting algorithms across the various
observing days Event Horizon Telescope Collaboration et al.
(2019a, 2019f).
The width of the ring-like image is another important

diagnostic that can be used to constrain physical characteristics
of the accretion flow such as the accretion rate. Moreover, the
fractional ring width provides a natural upper bound on the
potential difference between the measured diameter of the
image and the diameter of the black hole shadow and, hence,
on the uncertainty in the inference of the black hole mass.
Indeed, extensive simulations have shown that the outline of
the black hole shadow is contained within the width of the ring-
like image, even though it might not coincide with the location
of maximum brightness, independent of the plasma properties
in the radiatively inefficient flow or the underlying metric of the
spacetime (Younsi et al. 2023; Özel et al. 2022).
In practice, the width of a ring-like image is determined by

the visibility amplitudes at and beyond the baseline lengths that
correspond to the first bump of the top panel of Figure 2, i.e.,
beyond ∼5 Gλ. The sparseness of the interferometric data at
these large baseline lengths hampers substantially the ability of
traditional imaging algorithms to constrain ring widths. In the
case of the regularized maximum likelihood algorithms, this
sparseness of data causes the inferred ring width to be
determined primarily by the strengths of the regularizers,
which are necessary to bound the otherwise underdetermined
image reconstruction (see, e.g., Figure 7 of Event Horizon
Telescope Collaboration et al. 2019d). As such, only a
conservative upper bound of 0.5 fractional width has been
reported so far based on earlier imaging algorithms (Event
Horizon Telescope Collaboration et al. 2019a).

Figure 2. Comparison of the visibility-amplitude (top) and closure-phase
(bottom) data to the highest-posterior image reconstruction. The theoretical
errors are shown as error bars on the PRIMO reconstruction. Very little
structure is seen in the residuals of both the amplitude and closure-phase plots.

Figure 3. Violin plot comparing the posterior (left half of the violins) of the
amplitudes of PCA components 2, 6, 10, 14, and 18 to their priors (right half of
the violins). The posterior distributions of the low-order components are
thinner than the priors, indicating that their PCA amplitudes are well
constrained by the data.
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In contrast, training PRIMO with the large suite of synthetic
images obviates the need for regularizers and results in
reconstructions that reach the nominal resolution of the EHT
array. We find that the ring width in the same subsample of
MCMC chains of PRIMO images is 9.6± 0.5 μas, which
corresponds to a fractional width of 0.23 that is a substantial

improvement compared to the earlier inference. This improve-
ment will lead to reduced errors in the inferred mass of the M87
black hole based on the reconstructed image. Achieving this,
however, requires a careful calibration between the diameter of
the ring measured in the images and that of the black hole
shadow boundary. We leave a quantitative calibration of our

Figure 4. (Top) Comparisons of highest-posterior PRIMO images with total flux equal to 0.5, 0.6, and 0.7 Jy. (Middle) Comparisons of the highest-posterior images
using only 12, 14, and 18 PCA components. The morphology of the image is robust to changes in total flux and the number of PCA components. (Bottom) Example
images randomly drawn from the MCMC steps of the fiducial chains with flux of 0.6 Jy and 20 PCA components. All three example images have posteriors that are in
the 50th percentile.

Figure 5. Comparisons of reconstructed images based on the EHT data obtained on 2017 April 5, 6, 10, and 11. All reconstructions were performed with 20 PCA
components and a compact flux of 0.6 Jy. The diameters and widths of the images are consistent across the duration of the 2017 observing campaign, which spans
approximately one dynamical timescale for phenomena near the horizon of the M87 black hole.
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algorithm (similar to that performed in Event Horizon
Telescope Collaboration et al. 2022f) to future work.

Future EHT observations with additional telescope locations
and higher bandwidth will also allow us to use a higher number
of PCA components with PRIMO with higher variance in the
azimuthal direction. This will lead to further improvements in
the effective resolution of the image and allow us to better
constrain the image morphology.

The authors thank the anonymous reviewer for comments
that improved the manuscript. L.M. gratefully acknowledges
support from an NSF Astronomy and Astrophysics Postdoc-
toral Fellowship, award no. AST-1903847. D.P. and F.O.
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