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ABSTRACT 
 

In this letter, we seek new traveling wave solutions to Burgers equation via a new approach of 
improved )/( GG  -expansion method. We handle the calculations with the aid of computer 

software Maple-13. As a result, many periodic and soliton like solutions have been achieved in 
terms of the hyperbolic functions, trigonometric functions, exp-functions and rational function 
solutions. The method is very simple for solving nonlinear evolution equations (NLEEs).  Further, 
both two and three-dimensional plots of the obtained wave solutions are also given to imagine the 
dynamics of the equation. 
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1. INTRODUCTION 
 
Nonlinear evolution equations (NLEEs) that 
models most phenomena have been the subject 
of study in various branches of Mathematical and 
Physical sciences such as physics, biology, 
chemistry, biochemistry, applied and pure 
mathematics, applied and pure physics etc. 
Recently, both mathematicians and physicist 
have devoted huge exertion to study exact 
solution of the NLEEs and many powerful 
methods have been established such as, the 
inverse scattering transform method [1], the 
complex hyperbolic function method [2,3], the 

ansatz method [4,5], the )/( GG -expansion 

method [6-11], the modified simple equation 
method [12,13], the exp-functions method[14], 
the sine-cosine method [15], the Jacobi elliptic 
function expansion method [16,17], the F-
expansion method[18,19], the Backlund 
transformation method [20], the Darboux 
transformation method [21], the homogeneous 
balance method [22-24], the Adomian 
decomposition method [25], the auxiliary 

equation method [26], the ))(exp(  -

expansion method [27,28] and so on. Recently, 
Kheiri et. al. [29] found some traveling wave 
solutions of the Burgers equation using basic

)/( GG expansion method and found only three 

solutions a trigonometric, a hyperbolic and a 
rational function solution. They consider the 
Burger equations of the form:  
 

xxxt uuuu 
                                          

(1) 

 

Introduced by Burgers [30] as a model for 
turbulence, equation (1) and its inviscid 

counterpart 0 xt uuu  are essential for their 

role in modeling a wide array of physical systems 
such as traffic flow, shallow water waves.  
 

To the best of our knowledge, this equation is not 
solved via a new approach of improved (G'/G) -
expansion method with the auxiliary equations

22 GCGBGAGGG   considering both 
the positive and negative values of suffices in the 
considered solutions. 
 
In this article, we study the traveling wave 
solutions of the Burgers equation via new 

approach of improved )/( GG -expansion 

method with auxiliary equation 
22 GCGBGAGGG  .  

 
2. NEW APPROACH OF IMPROVED 

(G′/G)-EXPANSION METHOD 
 

Let us consider a NLEE for ),( txU  in the form 

 

 0),,,,,,( ttxtxxtx UUUUUUP
      

 (2) 

 
Where P is a polynomial, which includes 
nonlinear terms and the highest order 
derivatives.The transformation       
                                                         

)(),( utxU  , wtx ,                    (3) 

 

 permits us rising Eq.(2) to an ODE for )(uu 
 
                                                                      

0),,,(  uuuP
                           

(4) 

 
Consider that the solution of ODE Eq.(3) can be 

uttered by a polynomial in )/( GG as follows 

 

                     (5) 

 
Where  
 

)(G  satisfies the ODE 

22 GCGBGAGGG  ,              (6) 

 
where CBA ,, are real parameters and 1C , 

then the solutions of ODE Eq.(6) are 
 

Case-1: For the condition ,0)1(4,0 2

1  CABB  we have 
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Case-2: For the condition
 

,0)1(4,0 2

1  CABB  we have 
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Case-3: For the condition ,0)1(,0 2  CAB  we have 
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Case-4: For the condition
 ,0)1(,0 2  CAB  we have  
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where 1C  
and 2C  

are arbitrary constants and 

1i while 1C  mmjCBAwai ,,;,,,,   

are constants to be determined later, ma and 

ma are not both zero simultaneously. The value 

of m  can be fixed balancing the highest order 
derivatives and nonlinear terms in the Eq.(4). 
Using Eq.(5) and Eq. (6) into Eq.(4) and 
collecting all terms with the identical order of 

mmjGG j ,,;)/(  , and setting them 

to zero, yields a set of algebraic equations for 

unknowns mmjCBAwai ,,;,,,,  . 

Now, solving the algebraic equations for 

mmjCBAwai ,,;,,,,  with the 

Maple software and putting in the general 
solutions of ODE (6), we gain the solutions of Eq. 
(1). 
 

3. APPLICATION  
 
Burgers’ equation (1) is perhaps the simplest 
model that couples the nonlinear convective 
behavior of fluids with the dissipative viscous 
behavior. Introduced by Burgers [30] as a model 
for turbulence, equation (1) and its inviscid 

counterpart 0 xt uuu  are essential for their 

role in modeling a wide array of physical systems 
such as traffic flow, shallow water waves.  
 

In this section, we will use a new of approach 

improved )/( GG -expansion method to find the 

exact traveling wave solutions of the Burgers 
equation (1). Inserting Eq. (3) into Eq. (1) we 
amend Eq. (1) into the following ODE:  
 

0 uuuuw           (11) 
 

Integrating Eq. (11) one time with respect to 

traveling variable  yields 
 

02/2  uuwuk           (12) 
 

Homogeneous balance gives 1m and thus the 
equation (1) has the following solution 
 

)/()/()( 110 GGaGGaau     (13) 

 

Where wtxutxu  ),(),( and 1a , 1a
are not both zero simultaneously. 
 
Inserting Eq.(13) and Eq.(6)  into Eq.(12), let the 
coefficients of  

)2,1,0,1,2(,)/(   iGG i
 be zero, 

yields a set of algebraic equations as follows: 
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Solving these over determine set of equations for waaa ,,, 101 with the aid Maple 13, we achieve the 

following solutions:  
 

Set-1: ,22,)1(42,0 1
2

01  CaCAkBBaa  

 and 

 

Set-2: ,0,)1(42,2 1
2

01  aCAkBBaAa  )1(422 CAkBw   

 
On behalf of the set 1, we have the solutions 

 

 )/()22()1(42)( 2 GGCCAkBBu                               (15) 

 
According to the cases in the method we have 

 

Case-1: When ,0)1(4,0 2
1  CABB  then  
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where tkx 12   and 21,CC are arbitrary constants. The Figs. 1 and 2 indicates the nature 

of the solution.  
 

 
Fig. 1. 3D profile of kink soliton solution              

of Eq. (16) for 11  kBAC , 

1,2 2  CC  

 
 

Fig. 2. 2D profile of kink soliton solution of 

Eq. (16) for 11  kBAC , 

1,2 2  CC with 2x  
 

Case-2: When ,0)1(4,0 2
1  CABB  then  
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where tkx 12   and 21,CC are arbitrary constants. The Figs. 3 and 4 indicates the nature 

of the solution.  
 

Fig. 3. 3D profile of singular kink soliton 

solution of Eq. (17) for 11  BAC , 

8.0,1,2 2  kCC  

Fig. 4. 2D profile of singular kink 
soliton solution of Eq. (17)

11  BAC , 

8.0,1,2 2  kCC with 2x  

 

Case-3: When ,0)1(,0 2  CAB  then  
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where tkx 242   and 21,CC are arbitrary constants. The Figs. 5 and 6 indicates the nature 

of the solution.  
 

 
Fig. 5. 3D profile of periodic solution of 

Eq. (18) for ,0,11  BkAC , 

1,2 2  CC  

 
Fig. 6. 2D profile of periodic solution of 

Eq. (18) for ,0,11  BkAC , 

1,2 2  CC with 2x  

 

Case-4: When ,0)1(,0 2  CAB  then  
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where tkx 242   and 21,CC are arbitrary constants. The Figs. 7 and 8 indicate the nature 

of the solution.  
 

 
Fig. 7. 3D profile of soliton solution of 

Eq. (19) for ,0,1  BkA , 

4,2,2 21  CCC  

 
 

Fig. 8. 2D profile of soliton solution of 

Eq. (19) for ,0,1  BkA , 

4,2,2 21  CCC with 2x  

 
In favor of the set 2, we have the solutions 

 

 
12 )/(2)1(42)(  GGACAkBBu                                                           (20) 

 
According to the cases in the method we have 
 

Case-1: When ,0)1(4,0 2
1  CABB  then 
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where tkx 12   and 21,CC are arbitrary constants. The Fig. 9 indicate the nature of the 

solution.  
 

 
Fig. 9. 3D profile of singular kink soliton 

solution of Eq. (21) for , 
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Case- 2: When   then 

  

                           (22) 

 

Where tkx 12   and 21,CC are arbitrary constants. The figure of the solution (22) is similar 

to the figure of the solution (17). So we omit this. 

 

Case-3: When ,0)1(,0 2  CAB  then  
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Where tkx 242   and 21,CC are arbitrary constants. The figure of the solution (23) is 

similar to the figure of the solution (18). So we omit this. 

 

Case-4: When ,0)1(,0 2  CAB  then  
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Where tkx 242   and 21,CC are arbitrary constants. The figure of the solution (24) is 

similar to the figure of the solution (19). So we omit this. 
 
Remark: All of the solutions available in this 
latter have been checked with Maple by putting 
them back into the original equations. 
 

4. COMPARISON 
 
Many researchers solved the Burgers equation 
for obtaining analytical and exact solutions by 
using different methods. Kheiri et al. [29] studied 
this equation by applying basic (G'/ G) -
expansion method to construct traveling wave 
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and Eq. (15) are obtained. If we setting 
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equation reduced to our auxiliary equation and 
our set -1 being similar to their obtained 
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already published results which is presented in 
the following Table 1 obtained by Kheiri et al. 
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Eq.(21), Eq. (22), Eq. (23) and Eq. (24) are 
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Table 1. Comparison our solutions with Kheiri et al. [29] solutions 
 

When ,  replace 

by in our Eq. (18)       

  , 

 

When replace by  replace 

by in Eq. (14) of Ref. [29] 

,

 

When and   in our 

solution Eq. (19) 

   

When replace by  and by 

 in Eq. (13) of Ref. [29] 

 

 

5. CONCLUSION 
 
In this paper we successfully used the new 

approach of improved )/( GG -expansion in the 

Burgers equation and got some new traveling 
wave solutions, including the hyperbolic functions, 
trigonometric functions, exp-functions and 
rational function solutions. Kheiri et al. [29] 
obtained only three solutions but we obtained 
eight solutions. Beside this, both two and three-
dimensional plots of the obtained wave solutions 
are also provided to visualize the dynamics of the 
equation. Moreover, the method appears to be 
easier, faster and can be handle by computer 
easily to solve NLEEs and we used Maple-13 to 
solve the equation. This will have a good wisdom 
to promote the extensive application of the 
equations. 
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