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ABSTRACT 
 

This simulation study has been conducted to evaluate the performances of six different multivariate 
normality tests under different experimental conditions. Obtained results of 50,000 Monte Carlo 
Simulation showed the most reliable when the Royston (Roy), Srivastava-Hui (S-H), and Doornik-
Hansen test (D-H) have been applied. The above mentioned tests retained Type I error rates at 
nominal alpha level (0.05). Whereas, the estimations of Type I error of Mardia’s Skewness (M-S), 
Mardia’s Kent (M-K) and Henze and Zirkler (H-Z) test caused variations depending on sample size 
and number of variables. The estimations of test power of all tests have been affected by 
distribution shape, and the all related tests produced highly test power values especially when 
samples were taken from Multivariate Cauchy and Lognormal distributions. On the other hand, the 
estimations of test power of all tests have been found extremely low when samples were taken 
from multivariate t-distribution with 10 d.f. Multidimensional Scaling (MDS) technique has been 
applied to classify the tests those have had similar performance and the factors those affected the 
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performances of the above mentioned tests. At the end of Multidimensional Scaling analyses, it has 
been observed that the Roy, S-H and D-H tests showed similar performance, and the 
performances of these tests were obviously different than that of the others in general.  
 

 

Keywords: Multivariate normality; type I error; test power; multidimensional scaling technique. 
 

1. INTRODUCTION 
 

Practically, studying with multivariate data sets is 
very common in case of those studies which 
related to the fields of medicine, agriculture, 
forestry, aquaculture, sociology, psychology, and 
education. Multivariate statistical techniques 
such as MANOVA, Discriminant Analysis, 
Multivariate Regression are commonly used in 
practice for the assumption of multivariate 
normality (MVN). The sensitivity of these 
multivariate techniques to the MVN has been 
reported by different researchers, and many 
multivariate normality tests have been suggested 
to check out this assumption whether met or not. 
This assumption has generally been ignored [1-
3]. Consequently, the researchers may be come 
up with conflicting or unreliable results. Many 
simulation studies have been carried out by the 
following researchers and they emphasized on 
the importance of the MVN assumption for these 
methods and also described the effect of 
deviations from multivariate normality on 
reliability of results [1,2,4-13]. 
 

Many different multivariate normality tests have 
been proposed and there are several simulation 
studies in the literature cited for comparing             
the performances of some of those tests 
[1,2,5,7,8,10-14]. When these tests are 
compared in terms of their performances then it 
would be more informative if both of Type I error 
and test power estimates of these tests are 
considered simultaneously. Therefore, it is an 
important issue to classify these tests on the 
basis of their performance by using a graphical 
methods namely Multidimensional Scaling 
Technique (MDS). After that it would be possible 
to see the tests that have similar or same 
performances under different experimental 
conditions. For this purpose, we think that it 
might be a good choice to classify the all MVN 
tests considered based on their performance as 
a subjective hypothesis testing because there is 
no any other hypothesis test to compare the 
results of simulation studies (Type I error rate 
and test power). 
 

2. MATERIALS AND METHODS 
 

The main objective of this study is compare the 
type I error rate and test power of different 

multivariate normality tests (MVN) and also 
classifying these tests on the basis of their 
performances. First of all, a Monte Carlo 
simulation study has been designed for this 
purpose. In this study, a total of 50,000 data sets 
along with the combinations of sample size i.e.; 
n=20, 30, 50 and 100; and number of variables 
i.e.; p=2, 3, 4 and 5 have been generated from 
four different multivariate distributions ranging 
from the multivariate normal to severe deviations 
from multivariate normality. True correlation 
between the variables has been determined as 
Rho=0.60. A total of 6 different tests of the MVN 
namely: Mardia’s Skewness (M-S), Royston 
(Roy), Srivastava-Hui (S-H), Doornik-Hansen 
Test (D-H), Henze-Zirkler Test (H-Z), and 
Mardia’s Kent (M-K) have been kept in 
consideration while carrying out this study. Since 
it is possible to find more detail information from 
both different multivariate text books and articles 
in this regard, but we did not feel it necessary 
whether to provide theoretical information related 
to these tests. Moreover, the above mentioned 
tests have also been classified based on their 
performance by using Multidimensional Scaling 
Technique (MDS).  
 
3. RESULTS 
 
3.1 Results of Type I Error Rates 
 
The empirical type I error rates regarding to the 
six tests are given in Table 1. Table 1 showed 
that the type I error estimates of the Royston 
(Roy), Srivastava-Hui (S-H), and Doornik-
Hansen test (D-H) are found very close to the 
nominal alpha level (0.05). Generally, the type I 
error rates of these tests varied from 4.9 to 5.5% 
regardless with sample size (n) and number of 
variables (p). On the other hand, the type I error 
rates of Mardia’s Skewness (M-S), Mardia’s Kent 
(M-K) and Henze-Zirkler Test (H-Z) varied based 
on their sample size and number of variables. 
Among these three tests, the closest estimations 
to the nominal alpha level have been observed 
when H-Z test was applied. For H-Z test, the type 
I error rates were found to be between 2.3 and 
5.5%. The most reliable results have been 
obtained when sample size of 30≤n≤50 
regardless number of variables while the most 
deviated results were noticed when sample size 
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of n≤20 in case of H-Z test.  The type I error 
estimates of M-S test have generally been found 
around 6.00% (varied from 6.0 to 7.2%). The 
most deviated results, among the M-S, M-K and 
H-Z, were obtained when M-K test was used 
under sample sizes of n≥50.  The M-K test 
showed reliable results especially when sample 
size was 30.  
 
3.2 Results of Test Power 
 
The estimations of test power for six different 
tests have been given in Tables 2, 3 and 4. The 
test power estimates of all tests have been found 
lowest in range when samples were taken from 
multivariate t-distribution with 10 d.f. (Table 2). 
The maximum test power value has been 
obtained when D-H (67.8 %) and M-K (63.2%) 
tests were applied under n=100 and p=5. None 
of these tests reached enough to test power 
value of 80.00% under such experimental 
circumstances. In contrast, the test power 
estimates under multivariate t-distribution, all six 
tests performed highly test power for skewed 
distributions namely Multivariate Cauchy           
(Table 3) and Multivariate Lognormal (Table 4) 
distributions. For both of the multivariate Cauchy 
as well as multivariate Lognormal distributions, 
all estimations of each test power have been 
recorded as 100.00% in entire combinations of n 
and p exceptionally in a few cases when n = 20. 
The lowest test power was appeared when n = 
20 and p = 2 for M-K test that has been achieved 
as 87.2%. As far as the Roy and D-H tests are 
concerned, both of them have always attained to 
100% test power regardless of sample size and 
number of variable. 
 
3.3 Results of Multidimensional Scaling 

Technique  
 
Multidimensional Scaling Technique (MDS) has 
been applied aimed to classify the said tests in 
terms of their performances (Type I error rate 
and test power) under all considered 
experimental conditions. In this way, it would be 
possible to determine the tests that revealed 
similar performance. The results related to the 
test have been shown in Figs. 1, 2, 3, 4, 5 and 6. 
Multidimensional scaling is an exploratory 
technique used to visualize proximities (a 
proximity is a number that indicates how similar 
or how different two objects or variables) in a low 
dimensional space. MDS provides a researcher 
to uncover the hidden structure or relations 

among the variables. Each object is represented 
by a point in a multidimensional space. Two 
similar objects are represented by two points that 
are close to each other, while two different or 
dissimilar objects are represented by two points 
that are apart from each other [15]. 
 
MDS analysis performed to classify these tests 
with respect to type I error estimates under 
different sample size and number of variable 
combinations (Fig. 1). Two different goodness-of-
fit criteria namely R2 and stress coefficient have 
been used to determine the suitability of MDS 
technique to assess the type I error estimates of 
all six tests simultaneously. R2 and stress 
coefficient values (0.994 and 0.029) indicated 
that MDS technique was one of a good choice to 
evaluate the performances of these tests. 
 
Similar and different tests with respect to their 
Type I error estimates under all sample size         
and number of variable combinations are given in 
Fig. 1. As the Fig. 1 shows that the D-H, S-H, 
and Roy tests are placed in the same group that 
means these tests produced very similar results 
in terms of retaining type I error rate at the 
nominal alpha level (0.05) or the performances of 
these tests are quite similar to each other. On the 
other hand, the M-S, H-Z, and M-K tests are 
located in different places. Consequently, the 
type I error estimates of M-S, H-Z, and M-K tests 
were found different when compared them to the 
D-H, S-H, and Roy tests. It is also possible to 
conclude that the performances of M-K are 
obviously different from the D-H, S-H, and Roy 
tests. 
 
In order to determine those factors that affect 
Type I error estimates of six tests are given in 
Fig. 2. The Results of MDS showed that the type 
I error estimates have generally been affected by 
sample size and number of variables (Fig. 2). 
Differences among the tests were quite obvious 
especially when n=20 and n=30. As sample size 
is increased then the effect of number of 
variables on type I error estimates decreased to 
ignorable level.   
 
Figs. 3, 4 and 5 have been established by using 
MDS technique aimed to determine similar tests 
in terms of test power estimates when samples 
were taken from multivariate Cauchy, 
multivariate lognormal, and multivariate t-
distribution with 10 d.f., respectively.  
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Table 1. Type I error rates when samples are taken from multivariate normal distribution 
 
 n=20 n=30 n=50 n=100 
 p=2 p=3 p=4 p=5 p=2 p=3 p=4 p=5 p=2 p=3 p=4 p=5 p=2 p=3 p=4 p=5 
M-S 6.3 6.0 6.3 6.1 6.2 6.8 6.9 7.0 6.2 6.7 6.9 7.2 6.2 6.3 6.3 6.6 
M-K 3.9 4.5 3.8 4.0 4.8 5.7 5.6 5.2 6.2 7.1 8.0 8.2 6.3 8.5 9.7 10.5 
D-H 5.0 5.2 5.2 4.9 5.1 5.2 5.0 5.1 5.4 5.2 5.3 5.4 5.1 5.3 5.5 5.4 
S-H 5.1 5.1 5.1 5.2 5.1 5.1 5.0 5.1 5.3 5.3 5.3 5.4 5.3 5.4 5.4 5.5 
H-Z 3.5 2.9 2.7 2.3 4.9 4.9 5.0 5.1 5.5 5.3 5.2 5.1 4.4 4.2 4.0 3.9 
Roy 5.2 5.3 5.1 5.0 5.1 5.3 5.2 5.3 5.4 5.4 5.5 5.2 5.2 5.3 5.1 5.1 

 
Table 2. Test power of the tests when samples are taken from multivariate t- distribution with 10 d.f 

 
 n=20 n=30 n=50 n=100 
 p=2 p=3 p=4 p=5 p=2 p=3 p=4 p=5 p=2 p=3 p=4 p=5 p=2 p=3 p=4 p=5 
M-S 15.9 17.1 16.8 16.7 19.5 21.6 22.5 23.9 23.2 26.7 30.2 32.0 29.5 33.4 38.5 41.7 
M-K 12.0 12.0 10.6 8.3 18.4 21.9 21.9 21.2 28.3 33.7 37.3 38.7 44.3 52.2 59.6 63.2 
D-H 15.1 16.9 17.8 19.1 20.7 24.4 25.8 28.5 28.9 33.9 39.4 43.1 44.0 53.4 61.9 67.8 
S-H 11.3 11.5 11.0 10.6 13.3 12.8 12.6 12.0 13.8 13.0 13.2 13.1 12.2 11.7 11.1 10.0 
H-Z 8.3 8.1 7.3 7.9 10.3 9.8 9.1 8.6 11.6 11.3 11.7 10.4 15.4 16.0 16.2 15.1 
Roy 13.0 15.1 15.9 18.3 15.7 18.4 19.1 21.8 16.6 19.1 22.0 24.6 34.5 41.4 48.8 53.3 
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Table 3. Test power of the tests when samples are taken from multivariate Cauchy distribution 
 
 n=20 n=30 n=50 n=100 
 p=2 p=3 p=4 p=5 p=2 p=3 p=4 p=5 p=2 p=3 p=4 p=5 p=2 p=3 p=4 p=5 
M-S 96.9 98.5 99.9 99.8 100 100 100 100 100 100 100 100 100 100 100 100 
M-K 96.6 99.2 99.5 99.7 100 100 100 100 100 100 100 100 100 100 100 100 
D-H 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 
S-H 97.1 99.2 100 100 100 100 100 100 100 100 100 100 100 100 100 100 
H-Z 97.7 98.8 99.4 99.9 100 100 100 100 100 100 100 100 100 100 100 100 
Roy 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

 
Table 4. Test power of the tests when samples are taken from multivariate lognormal distribution 

 
 n=20 n=30 n=50 n=100 
 p=2 p=3 p=4 p=5 p=2 p=3 p=4 p=5 p=2 p=3 p=4 p=5 p=2 p=3 p=4 p=5 
M-S 95.6 98.2 98.3 98.5 99.4 100 100 100 100 100 100 100 100 100 100 100 
M-K 87.2 91.2 93.1 93.2 98.2 100 100 100 100 100 100 100 100 100 100 100 
D-H 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 
S-H 94.1 96.2 95.7 96.3 99.5 100 100 100 100 100 100 100 100 100 100 100 
H-Z 96.8 97.8 98.4 99.1 100 100 100 100 100 100 100 100 100 100 100 100 
Roy 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 
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All tests were located in the same group when 
samples have been taken from multivariate 
Cauchy and multivariate lognormal shown in 
Figs. 3 and 4. It indicated that when samples 
were taken from distributions with high skewness 
and kurtosis (multivariate lognormal and 
multivariate Cauchy distributions) then the test 
power estimates of all tests were found highly 
and similar to each other. Therefore, it is possible 
to conclude that the test power of these tests do 
not affect from distribution shapes as long as 
samples are taken from distributions with high 
skewness and kurtosis values. 
 
When samples were taken from multivariate t-
distribution with 10 d.f. (Fig. 3) then it was 
observed that the tests have been assigned to 
three different groups. Such as, the M-K and D-H 
tests have been placed to first group, H-Z and S-
H tests found in second group while the Roy and 

M-S were located in the third group. The tests 
that were situated in the first group, among these 
three groups, had high performance when 
compared to the tests that were located in the 
second and third groups.  
 
Factors that affect test power estimates have 
also been determined by using MDS and the 
results were given in Fig. 6. According to the 
results, the main factors that affect the test power 
estimates were known as skewness and kurtosis 
of distribution (distribution shape) where the 
samples have been taken from (Fig. 6). Cauchy 
and lognormal distributions were taken place in 
the same group while multivariate t-distribution 
with 10 d.f found in a different group as shown in 
Fig. 6.  That is why, it is possible to conclude that 
it is expected to obtain quite similar test power 
estimates as long as samples were taken from 
distributions with high skewness and kurtosis. 

 

  
 

Fig. 1. MDS result for assessing type I error 
estimates 

 

Fig. 2. MDS result for determining factors that 
affect type I error estimates 

 

  
 

Fig. 3. MDS result for assessing test power 
estimates when sample are taken from 

multivariate lognormal distribution 

 

Fig. 4. MDS result for assessing test power 
estimates when sample are taken from 

multivariate Cauchy distribution 
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Fig. 5. MDS result for assessing test power 
estimates when sample are taken from 
multivariate t- distribution with 10 d.f 

 
Fig. 6. MDS results for determining factors 

that affect test power estimates 

 
4. DISCUSSION AND CONCLUSION 
 
It is known very well that the performance of 
many multivariate methods is affected by 
deviation from normality [1,2,16]. However, the 
assumption of multivariate normality has often 
been ignored [17]. This situation may lead to the 
achievement of misleading results. That is why, 
the answer of such question is important here: 
which test(s) should be applied for testing the 
MVN assumption? It is possible to answer this 
question by determining the tests having similar 
performance by considering both of the type I 
error and the test power estimates of the said 
tests. Firstly, a comprehensive simulation study 
has been carried out for obtaining the empirical 
type I error and test power estimates of the 
Royston (Roy), Srivastava-Hui (S-H), and 
Doornik-Hansen test (D-H), Mardia’s Skewness 
(M-S), Mardia’s Kent (M-K) and Henze-Zirkler (H-
Z) tests in this regard. Then, Multidimensional 
Scaling (MDS) technique has been applied to 
classify the tests those have had similar 
performance and the factors affected the 
performances of those tests. The obtained 
results of this study showed that the Roy, S-H, 
and D-H tests are generally more appropriate 
tests whether to use in test of MVN assumption 
or not in respect to regardless of sample size, 
number of variables and distribution shape. On 
the other hand, the performances of the rest 
tests changed depending on experimental 
conditions. Thus, we suggested the application of 
the Roy, S-H, or D-H tests for testing MVN 
assumption before performing an inferential 
multivariate procedure like MANOVA, 
Discriminant Analysis, and/or Multivariate 

Multiple Regression for analyzing the multivariate 
data assume to MVN. Doornik and Hansen [12] 
compared their proposed method with Mardia 
[18], Royston extension of the Shapiro and Wilk 
[19] test. They reported that their test had a good 
performance in terms of retaining type I error rate 
at the nominal level and good test power values. 
Naczk [20] reported that the Henze-Zirkler test 
was the only test that could be recommended for 
the assessment of multivariate normality. Mecklin 
and Mundfrom [1] reported that there was no 
single test found to be the most powerful under 
all circumstances during the simulation studies 
when comparing the performance of 13 MVN 
tests depending on 10000 simulations. They 
recommend Henze- Zirkler test as a formal test 
for testing the MVN.  
 
Farrell et al. [2] conducted a simulation study to 
compare the size and power of the Royston [10], 
Doornik and Hansen [12], and Henze and Zirkler 
[8] test. They reported that the Royston's test 
produced the best results regarding empirical 
Type I error rates, which ranged between 4.54% 
and 5.26% over all combinations of n and p. The 
estimates for the D-H test were also extremely 
good in all cases. They also reported that the 
Henze and Zirkler (H-Z) test generally possesses 
good power across the alternative distributions 
investigated particularly for n >= 75 while it is not 
satisfactory when detecting the reason(s) of 
separation from MVN. 
 
While comparing the simulation results of our 
research work with those of other studies where 
we noticed some important differences and it is 
assumed that these differences may be resulted 
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due to the usage of different data generation 
routines, differences in experimental conditions 
and number of running simulation. As a results, 
the Royston (Roy), Srivastava-Hui (S-H), and 
Doornik-Hansen test (D-H) tests, based on our 
experimental conditions, were recommended for 
assessing MVN assumptions in general.   
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