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Abstract

Aims: In a previous paper we have obtained a result which providesvaway to consider
structured programs. Any directed graph whatsoever, aceptdithis result, is a dag overlajd
by a structured graph, with loops within loops in which no loogerlap. In such a structured
graph, the only backward edges go from somewhere in adabje head of that loop. Crucial {o
this result is the construction of what we call a |o@®. As suggested by R. E. Tarjan, we here
apply this result to three well-known situations. We asmpare our decomposition method|to

two earlier such methods, one by Tarjan and one, much oldeude.
Methodology: We use the conventions of classical mathematics, ichvbéts and functions
underlie all structures, such as directed graphs and leep, tand in which all facts obtained|in
the course of the work are presented as theorems andakenbased on definitions and
accompanied by valid proofs.
Results: We give a method of solving the single-source path expregsoblem for a reducible
graph by examining its loop tree, which must be unigée.give a necessary and sufficient loop
tree condition for a graph to have two edge-disjoint spaniiees, and a necessary and
sufficient loop tree condition for a graph to have a feedbadex.

Conclusion: The study of loop trees can be used to clarify many statn the theory o
directed graphs, in addition to the complete classificatiatirected graphs mentioned above.
Keywords: Loop trees, path expressions, edge-disgpanning trees, feedback vertices, strongly

connected components, wheels within wheels.

1 Introduction

This paper is concerned with several applications of theegrof a loop tree, introduced by the
author in [1]. In order to make this presentation selft@ioed, we review basic loop tree notation
here. In this paper, by a graph we shall always metireeted graph. When an algebraic language
program P is compiled, producing object code with a flowgraplo@ps in P do not necessarily
correspond to strongly connected subsets of G. Neversheles argue that, from a semantic
standpoint, an outer loop L of G is a strong component ofhith is non-trivial. (A strong
component of a graph is call&dvial if it has just one vertex and no edges.)
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An outer loop L of a graph G is a non-trivial strong component of it. éry point of L is a
vertexy O L such that there is an edge in Gytivom somex [0 L. A headof L, in a rooted graph
G, is either an entry point or the root of G. Here Wagls contains a head, of one of these two
kinds, which are mutually exclusive; it might contain more tbae entry point. Given an outer
loop L with a choice of hedldl aloopback of L is an edge leading tofrom somewhere in L, and
thebody B of L is the result of removing all loopbacks from L. Tien-trivial strong components
of B are then outer loops of B, and, by definition, fiestdlinner loops of G. These may contain
further loops, and so on, all of these being higher-levedritoops of G.

A loop treeof G is a tree T whose root is G; in which every outer looB & a child of G; and in
which every outer loop of the body B of any vertext1G in T is a child of L. If G itsélis
strongly connected, it has one child in T, namely G it$el&ll other cases, the children of a node
U in T are the non-trivial strong components of the body ofith respect to some head of U.
The fundamental theorem of loop trees [1] states that eyraph G whatsoever has at least one
loop tree, having several further properties which we usaabédrlhere is a linear ordering of the
nodes of G as+P..., R, in such a way that, for every edge E 7 {PP) in G, eitheri <j or else E

is a loopback, as defined above. With respect to this orderiegy &op in G is induced by a
contiguous subset {P P, ..., R} of the nodes, with head,Pwhereu < v. Two loops cannot
have the same head, and loops are properly nested, so thahyfowo loops, either they are
disjoint or one is contained in the other. Since a loop mightain more than one entry point, G
might have more than one loop tree. However, it is statedl]jrafid proved in [2], that G has a
unique loop tree if and only if it is reducible, in the senfsAllen and Cocke. The fundamental
theorem of loop trees is here applied in the following Virzys.

1.1 Path Expressions

All paths from the start nodeof a graph G to an arbitrary nodén G form the language(P(s,

V)) generated by a specific regular expressios) ¥( Such a regular expression is useful in
carrying out global flow analysis and in solving shortesh pgbblems and sparse systems of
linear equations. In section 2 below, we present a reldd&ween loop trees and such path
expressions. Specifically, given a loop tree of a redeabhph, we show how to generate afi, P(
v) for fixed s and allv. We also briefly discuss an extension of this technique teredurcible
graphs.

1.2 Edge-Disjoint Spanning Trees

A spanning treeof a graph G is a subgraph of G which is a directed &e@,which contains all
vertices of G. Two spanning trees of G adge-disjointif they have no edges in common. It is
known that two edge-disjoint spanning trees of a rooted graph &,hlaeing the same root
exist if and only if G has no bridges, wheréri&ge is an edges~-w which is included in every
path fromr to w. In section 3 below, we derive a necessary and sufficient comddr a graph G
with a loop tree T to have two such trees, namely that exentegx in G other than, and every
loop in T not containing, has at least two entry edges. We also show that a gi#tpla unique
loop tree, and having at least two vertices, must lzakeidge, and thus cannot have two edge-
disjoint spanning trees rootedrat
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1.3 Feedback Vertices

A feedback vertexof a strongly connected graph is a vertex contained in evely icythe graph.
Of course, not every graph has such a vertexeelback setis a set of vertices in a strongly
connected graph, such that every cycle in the graph musticattleast one vertex in the set.
Feedback vertices and feedback sets have been stutiedieely by Smith and Walford [3] and
by Garey and Tarjan [4]. In section 4 below, we obtain sessry and sufficient loop-tree
condition for G to have a feedback vertex. The condisamat G have a loop tree T with respect
to which G has no parallel loops and no conditional loops, in & semish we define; and that the
innermost loop L of G, which must be unique to T, containeréex which covers every other
vertex in L. This will then also be true of every other ltrge of G. We also obtain bounds on the
size of a minimal feedback set in a graph.

1.4 Clustering Trees

For any strongly connected graph G, we here compare ourrgctitst of loop trees with a
decomposition tree construction due to Tarjan, to whichefer as a clustering tree. Both of these
are tree decompositions in which the root representsnGuhich every vertex in the tree
represents a strongly connected subgraph of G; and in whidhjs the parent of Nin the tree,
then G contains G, where N represents Gand N represents & In section 5 below, we derive a
necessary and sufficient condition for a generalizatiolto@p trees to be identical to clustering
trees in all cases, and another such condition for thdse identical in at least one case. We then
show that every graph has a cost-free extension for whekhwo types of tree are identical in at
least one case.

1.5 Wheels within Wheels

Any strongly connected graph may be decomposed, in atVeastdys, into smaller such graphs,
which may in turn be decomposed into others, and so on. We hagtomled one such
decomposition; another earlier one was discovered by L&jcend later rediscovered by Knuth
[6]. In section 6 below, we compare our result with thdtwafe, and explicate its advantages over
Luce’s decomposition. We use Luce’'s work to provide a furSterpening of Knuth's
decomposition theorem, involving a special kind of graph whie call a chandelier. To make the
presentation clearer, we recast Luce’s work, usingeatigraph terminology; we also relate this
work to further commentary by Chaty and Chein.

1.6 Recent Research

The reader will doubtless note the lack, in this paper, ofisimal survey of recent research in the
given field. There is a good reason for this. Loop treeewaly discovered in 2004, and the
fundamental theorem of loop trees was only published, outdidlgernal technical reports, in
2007. Moreover, loop trees were discovered by accidettheirprocess of working on improved
compiled code for nested recursive procedures. It shoul@ s@hse, then, that no one has been
working on applications of loop trees, other than this audltdrpugh we hope that this swiftly
changes.
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2 Loop Trees and Path Expressions

In this section, by a path, we do not necessarily meang@esjpath, except as specified explicitly.
Indeed, most of the paths which we consider here may be thotigist resembling execution
paths through a flowgraph, each of which may clearly gored a loop more than once, and
similarly for several loops. Such execution paths, howevertypically thought of as sequences
of statements, which are vertices in the flowgraphcdntrast, paths here, as always in a graph,
are sequences of edges, rather than vertices. Watarested mainly in paths of execution which
start at one specific node of a graph, called its oocttart node. We do not specify a single exit
node; rather, we are concerned with all paths fronstidie nodes to any other node.

2.1 Introduction to Regular Expressions

Regular expressions here are those built up from variadyeesenting the edges of a graph, using
parentheses and the operatiéhs, and *, withA denoting the null string. They are unrelated to
the more general regular expressions found in a programamggage such as Perl. It has been
known for some time (see, e. g., [7]) that the set ofathpfromsto vis representable agP(s,

V)), where Pg, v) is some regular expression am@), in general, is the language generated by the
regular expressior. We are concerned here with generating the variogisvP{or an arbitrary
graph, and not merely one which is reducible in the senseleh Aind Cocke. Such regular
expressions are useful in carrying out global flow analgsid in solving shortest path problems
and sparse systems of linear equations.

2.2 Introduction to Loop Trees

Basic loop tree notation was introduced in section 1 abdteewill also make use of a specific
representation for a loop tree, as described in section 911. &fdr the purposes of implementing
this representation in programming languages of the Cyamé now refer to the nodes ag P.,
P._1, rather than as;P..., R. If G hasn nodes, then the representation involves two arraysdcalle
order andloops Theorder array gives the new ordering of the graph, witder{k] = zwhere R,

as above, is the node whose given index Eheloopsarray specifies where the loops are. JfsP
the head of a loop containimynodes, thetoopgk] = k+m; if P is not the head of any loop, then
loopgK] = k.

2.3 Generating Path Expressions from a Loop Tree

The problem of finding all of the B(v) for fixed s and arbitrary is known as the single-source
path expression problem. This is by analogy with the singlececshortest path problem, where
agains is fixed andv is arbitrary. We here present a way to solve this prolfler a reducible
graph G, given its (unique) loop tree as represented abreges is the start node of G. This will
be done by a single pass through the nodes of G, giveg, by, ®_; as above, where= PR,. In
order to distinguish path expressions in different graphsaksadto avoid two conflicting uses of
P, we replace the notationd?¥) of [7] by ns(s, v), indicating that this expression defines all paths
in G, whereasg(s, v), for a subgraph K of G, defines all those paths whichwsithin K.

We make use of five rules, denoted by (R1) through (R5) below.u¥dea stage countdy
initialized to zero, and a recursive program CKY,,where Y is either the entire graph G or the
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body B of some loop L in G, having head node with indeexBecause of our loop tree
representation, L will be of the form {PP,.1, ..., R}, for someu < v, where Ris the head of L;
and B, since it is the body of L, contains the same s\ttt L does. Here C(B) assumes that
is initialized tou; it calculatestg(Py, Py) for all w, u < w < v, and leavek set tov+1. Similarly,
C(G, 0) assumes thkis initialized to 0; it calculatesg(P,, P,) for allw, 0<w < n-1, and leaves
k set ton. We describe the general logic of C{Y,

At stagek, when we first come to tHeh node, we need to calculatg(Py, P). We first calculate a
temporary value for this; i = k, the temporary value i (the empty string), and we set

v (P, P) = A (R1)

If h#k, then we look at all edges, other than loopbacks, whichtée&d Let us refer to these as
X1 - Pq ..., % - P For every X P, since it is not a loopback, we must haye=), for some
a<k. A path from Bto R, not ending in a loopback, must therefore be a path fipim $ome X

= P, followed by X - P.. However, we already have an expression for all patm &, to P,
since we have already calculatedP,, Py) for all m, h < m < k. Our temporary expression for
ny(Pn, B is therefore the union, fordi <j, of all expressions of the forny (P, Xi)- (X - PJ);
that is, it is

Ty (P, B) =1y (Pr, X)- (X1 -~ P) O ... O wy(Pr, X)) (X - Py (R2)

If there are no loopbacks which lead tg this temporary expression is in fact the permanent
expression fory (P, RY). If there are loopbacks, it is not, since a path frgrtoM might end in a
loopback. This will always happen ify % the start of a loop L (note that L, being strongly
connected, must have at least one loopback); and weetact this, since we will hateopdKk] =

k+z # k. If B is the body of L, then C(Yh) now proceeds by calling C(&). When C(B,k)
returnsk has been increased byand, for the old value & we have calculated:

e permanent values af (P, Py) forh<m<k;
e atemporary value ofy(P,, R); and
e permanent values ag(P,, P,) for k< m<k+z From this we must calculate (P, P.)

for h < m< k+z and the only new calculations here are thosé fom < k+z. These calculations
proceed as follows.

First we calculater, (P, Py; that is, a expression for all (simple and non-simpje)es within the
loop L which start and end at.PTo do this, we look at all loopbacks which lead tp d&yain
referring to these asX- P, ..., X - P« For every X - B, since it is a loopback, it leads tp P
from some X= P, in L, and therefore in the body B of L. A simple cyclbigh starts and ends at
P« must therefore be a path in B from 8 some X= P, followed by X - P. However, we
already have an expression for all paths frrtoP, in B, since we have already calculatggPy,
Py for all m, k < m < k+z-1. An expression for all simple cycles of this formherefore the
union, for 1<i <j, of all expressions of the formg(Py, Xi)- (Xi — Py); thatis, it is

(P X1)- (X1 = RY O ... O (P, X))- (X5 - Py
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An expression for all cycles, simple and non-simplethaf form, and including the empty cycle
A, is therefore the * operator of regular expressionsiegpd this; that is, it is

1. (Po R) = (@e(Pe Xy)- (X1 » R O ... O me(Py, X))- (X — PJ)* (R3)

From this it is easy to calculate(P, Py) for k< m< k+z. A general patlp within L from R to R,

will be entirely within B if it contains no loopbacks of If it does contain loopbacks of L, then
that part ofp which follows its last such loopback is within B, and tast ofp is a cycle (simple
or non-simple) from Pto itself. Thereforep must consist of such a cycle, followed by a path
within B from R, to P,. We therefore have

m.(Pe, Pr) = 7L (Pi B - ma(Py, Pr) (R4)
Finally we considery (P, Py) for k< m<k+z Since R,is in the loop L, while Ris not, any path
from R, to P, must enter L through an entry point. Since G is reducible,d_dmy one entry
point, namely R Therefore any path from,ffo P,,in Y is a path from to R in Y followed by a
path from Rto R, in L, and we have

Ty (Pn, Pr) = 1ty (Pr, B) - 1 (P Pr) (R5)

. — . —

Fig. 2.1 A path expression example
2.4 An Example

The method of the preceding section will now be illustratsthg the graph of Fig. 2.1. This is a
reducible graph, with a unique loop tree, since the outer(iadpced by {2, 3, 4, 5, 6, 7, 8}) has
exactly one entry point (node 2), while the inner loop (inducef#tp$, 6}) also has exactly one
entry point (node 4). We adopt the following notation:

e Gisthe entire graph;

e L1 isthe outer loop;
e B1listhe body of the loop L1;
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e L2istheinner loop;
e B2is the body of the loop L2.

The steps in the algorithm are now as follows, keyed toulles (R1) through (R5):

Y h k Rule ﬂy(Ph, Pk)

G 1 1 R1 A

G 1 2 R2 a (temporary)

Bl 2 2 R1 A (temporary)

B1 2 3 R2 b

B1 2 4 R2 b-c (temporary)

B2 4 4 R1 A (temporary)

B2 4 5 R2 d

B2 4 6 R2 d-e

L2 4 4 R3 f-ef)*

L2 4 5 R4 ¢-eNH*-d

L2 4 6 R4 f-ef)*-de

B1 2 4 R5 b-c-(d-ef)*

B1 2 5 R5 b-c-(d-ef)*-d

Bl 2 6 R5 b-c-(d-e-f)*-d-e

Bl 2 7 R5 b-c-(d-e-f)*-g

B1 2 8 R5 b-c-(d-e-f)*-d-i O b-c-(d-ef)*-g-h = b-c-(d-e-f)*-(d:i O g-h)
L1 2 2 R3 b-c-@d-ef)*-(d-i O g-h)-i)*

L1 2 3 R4 b-c-d-ef)*-(d-i O g-h)-i)*-b

L1 2 4 R4 b-c-d-ef)*-(d-i O g-h)-i)*-b-c- (d-e-f)*

L1 2 5 R4 b-c-d-ef)*-(d-i O g-h)-i)*-b-c:- (d-e-f)*-d

L1 2 6 R4 b-c-d-ef)*-(d-i O g-h)-i)*-b-c- (d-e-f)*-d-e
L1 2 7 R4 b-c-d-ef)*-(d-i O g-h)-i)*-b-c- (d-ef)*-g

L1 2 8 R4 b-c- @d-e-f)*-(d-i O g-h)-i)*- b-c- (d-e-f)*- (d-i O-g-h)
G 1 2 R5 b-c- d-e-f)* (d-i O g-h)-i)*

G 1 3 R5 a: (b-c-@-ef)*-(d-i O g-h)-i)*-b

G 1 4 R5 a: (b-c- @-e-fy*-(di O g-h)-i)*-b-c- (d-e-f)*

G 1 5 R5 a: (b-c- @d-ef)*-(d-i O g-h)-i)*-b-c: (d-ef)*-d
G 1 6 R5 a-(b-c-@d-ef)*-(d-i O g-h)-i)*-b-c-(d-ef)*de
G 1 7 R5 a-(b-c- (d-ef)*-(d-i O g-h)-i)*-b-c-(d-ef)*-g
G 1 8 R5 a-(b-c- @d-e-f)*-(di O g-h)-i)*-b-c-(d-ef)*-(d-i O g-h)

2.5 Non-Reducible Graphs

In order to extend this method to a graph G which is not feléudt is necessary to consider all

possible loop trees of G. In the worst case, there may lexponential number of such loop trees.
This is therefore not a reasonable method in this cisee Tarjan has given, in [7], a method
which runs in polynomial time.
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3 Edge-Disjoint Spanning Trees

3.1 Introduction

In what follows, all graphs are taken to be directedodted graph G contains a vertex called
its root, such that for every vertexin G there is a path fromto v. A spanning treeof G is a
subgraph of G which is a directed tree, and which contdingertices of G. Two spanning trees
of G areedge-disjointif they have no edges in common. Such trees have masyas@aoted in

[8].

The discovery that every graph whatsoever has an inheterdture of loops within loops,
representable by a loop tree [1], raises the question alsabswch a loop tree must look like, in a
graph having two edge-disjoint spanning trees, each with the.rédée here provide a necessary
and sufficient condition for this, namely that everyterrin G other tham, and every loop in T
not containing, has at least two entry edges, as these are specifigefinition 3.1 below. We
emphasize that our condition does not provide any impnen¢ in the efficiency of finding two
edge-disjoint spanning trees with the same root; indeedaltaady possible to do this in linear
time [8]. Rather, our condition becomes a way of visuaigraphs which do, and which do not,
have two such spanning trees, in order to improve our iflosmderstanding of them.

We also show that a graph with a unique loop tree, and haviegsittwo vertices, cannot have
two edge-disjoint spanning trees rooted. at

3.2 Some Lemmas about Loop Trees

Basic loop tree theory was reviewed in section 1 abovee Me will need four more lemmas
about loop trees.

LEMMA 3.1. Given a loop tree T for a graph G, and a cycle C iméetexists a unique loop L
in T such that C both contains the head of L and is itselfagned entirely in L.

PROOF. Clearly C is contained in some non-trivial strong compbheof G, which is an outer
loop of G. Suppose first that C does not contain the hez#d.. Then we argue by induction on
the number of vertices in L; C is completely containgthiw the body B of L, and therefore
within some non-trivial strong component L of B, wherehlas fewer vertices than L (note that
loops within L are also loops within L). Now suppose thatdbtainsh, and, as before, is
contained entirely in L. Here L is unique in this senseabse C is contained neither in any other
strong component of G (which must be disjoint from L) norrig Bbop contained in L (because
such a loop cannot contai This completes the proof.

LEMMA 3.2. Given a loop tree T of a graph G with raotand any vertex in G, there is a path
fromr to zwhich includes no loopbacks in T.

PROOF. We order the vertices of G ag v, ...,V,, according to the fundamental theorem of loop
trees. We refer te-v; as a normal edge i< j; that is, if it is not a loopback. We start by showing
that, given any vertexin G other tham, there is a normal edge ydrom somex in G. Otherwise,
the only edges ty would be loopbacks, implying that is the head of some loop L in T.
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Therefore, sincg is notr, y is an entry point of L; so there must be an edgeftom somexin G
which is not in L. This edge cannot be a loopback, since a lokpbathe head of L is always
from somewhere in L; therefore it is a normal edge.llv¥es that there is a normal edgeztisom
some vertex, in G, and then te; from somez,, and so on back to This produces a path from
to z containing normal edges only, that is, containing no loopbackkscompletes the proof.

LEMMA 3.3. Given a loop L in a loop tree T of a graph G with ragatnd an edge-h, whereh
is the head of L bugis not in L, there is a path fronto e which contains no vertices in L.

PROOF. As before, we order the vertices of Gvasvy, ..., V,. If the indices of L are;, Vi, ...,V

thenh =v;, as we have seen. Haxér cannot be a loopback, since then beagndh would have to
be in L. Thereforee-his a normal edge, areE v for k<i. By Lemma 3.2, there is a patlfrom

r to einvolving no loopbacks; and all the verticesmaiust then also have indices less thaand
thus cannot be in L. This completes the proof.

LEMMA 3.4. Given a loop L in a loop tree T of a graph G with roothere is a path fromto
the headh of L which contains no vertices in L other than

PROOF. If h=r, we are done. Otherwiskjs an entry point, and there is an eégge wherehis
not in L. The lemma follows by concatenatiep to the end of the path fromto e which exists
by Lemma 3.3.

3.3 Bridges in Graphs

A bridge in a graph G with roat is an edge-w in G which is included in every path frano w.
Our work is based on the following result, cited by @ar[8], which notes that it follows from
more general work of Edmonds [9].

THEOREM 3.1. A graph with root has two edge-disjoint spanning trees, each withmaband
only if it has no bridges.

This is an immediate corollary of Lemma 1 of [8], whishai bit more general; it says tleatery
bridge in G must be ieveryspanning tree with roat, and that there always exist two spanning
trees, having roat, whose only common edges are the bridges in G.

Note that the definition of graphs in [8] does not altbem to have self-loops; however, Theorem
3.1 remains true, even in the presence of self-loops. Let &dvaph with roat, and let G” be the
result of eliminating all self-loops from G. A self-loopmnot be in a spanning tree, since a tree
contains no cycles; hence G has two edge-disjoint sparirees if and only if G* does. This
holds, by the theorem, if and only if G" has no bridgeswéter, a self-loop can never be a
bridge, by definition; so G” has no bridges if and only d@&s not.

The definition of graphs in [8] also allows them to have iplgltedges. Loop trees were originally
developed for graphs without multiple edges, but the thewrgasy to generalize; a strong
component containing an edgav must contain any further edges franto w. Consider now a
graph G with root, and with a loop tree T. Let us replace each bridgein G by two edges,
each going fronv to w, producing a graph G". Clearly a multiple edge caneaoa Ibridge, since
any path fronr to w could always use a different edge fremo w; thus G” has no bridges, and
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yet G” has the same loop tree T that G does. Thus anyreEmpvhatsoever can be a loop tree of a
graph with no bridges, and hence with two edge-disjoint spgrrees rooted at It follows that
the existence of such spanning trees is not derivable fnenform of T, if multiple edges are
allowed. In what follows, therefore, we assume that ocaplygs have no multiple edges.

We now consider certain conditions under which a graph withaber has a bridges-w. The
most obvious case is that in whighhas in degree 1; so in fact all paths whatsoever, going to
must use the edgew. There is, however, another general case, involving loeg.tteetw be the
unique head of a loop L, somewhere in a loop tree of a gBagipose that there is only one edge,
v-w, which goes tav from outside L (although there will be at least one other edge from
inside L). Therv-w is a bridge. Any path fromto w must enter L at some point, which must be
an entry point of L; and, by assumption, this musivband the only way to get to from outside

L is through the edgew.

Both kinds of bridge are illustrated in Fig. 3.1, where thot is taken to be the vertex A. The
edges B-C and C-D are bridges, here, since C and D bothindegree 1. The vertex B has in
degree 2, but the edge A-B is still a bridge becausdlie only way to get to B from the root (A).
Note that D-B is not a bridge, since we can get from B without going through D-B.

3.4 A Loop Tree Condition for Bridges

We now give a necessary and sufficient condition foedge in a rooted graph to be a bridge.
THEOREM 3.2. An edgev-w in a graph G with roatis a bridge in G if and only if either:

(@) whas indegree 1in G, or
(b) w is the unique entry point of a loop L, somewhere in a loopitrés andv is not
contained in L, ang-w is the only edge tas from outside L.

Fig. 3.1. Bridges in a graph

PROOF. We have seen in section 3.3 above that any edge satisfjfreg of our conditionsaj
and @) is a bridge. We now show that these are the only two kindsidge that G can have.
Suppose that-w is a bridge. If there is no edgew for u # v, then we have casa)(above. Now
suppose that such an edgev exists. Since G is a rooted graph, there is a simplenpom r to
u. Suppose that did not includev; then, by concatenating the edge to the end oft, we would
obtain a path fromr to w which does not include, contradicting our assumption thatv is a
bridge. Therefore must include.

621



British Journal of Mathematics & Computer Scien¢®)4612-666, 2014

In particular, there are simple pathg fromr tov, andnp, fromv to u. Heren1 does not include

the edger-w; otherwise it would have to go backwoand it would not be a simple path. Suppose
now thatr2 does not include the edgew. It would then be possible to go framo v (alongn1),

from there tou (alongnp), and then along the edgew. This gives a path fromto w that does
not include the edgew, which also contradicts our assumption that is a bridge. Thereforgp

includes the edge-w; and, in particular, there is a path fremto u. This path, followed by the
edge fromu tow, constitutes a cycle C.

We now show that C cannot inclugdeSuppose the contrary; then, in particular, there are paths
w3, fromw to v, andny, fromv to u. Heren4 does not includev, and thus does not include the

edgev-w. Thuszy, fromr tov, followed byng, fromv to u, followed by the edge-w, provides a
path fromr to w without including the edge-w, which is contained in neither; nor m4. Once
more this contradicts our assumption that is a bridge; therefore C does not include

Now consider a loop tree T for G. Let L be the loop wheslists by Lemma 3.1, so that C
contains the heddof L and is itself entirely contained within L. We showtthaannot include.
Suppose the contrary; then, since C does not incuithere is a paths from h tow, along C, that

does not includer. By Lemma 3.4, there is always a padl from r to h which includes no

vertices in L other thah, and which, therefore, also does not includaote thatv # h, since C
containsh but notv). Concatenatingg andns, we obtain a path fromto w that does not include

v, again contradicting our assumption that is a bridge.

Sincew is in L, whilev is not, it follows, by definition, thatv is an entry point of L. We now
show thatw is the only entry point of L. Suppose that L has anathény pointq # w. Consider a
second loop tree T, for whiahis the head of L. By Lemma 3.4, there is then a patliomr to

g which contains no vertices in L other th@nThereforeg7 does not contaiw and thus does not
contain the edge-w. Since L is strongly connected, there is a pailn L from g to w. Hereng
also does not contain the edgew, since ng is entirely within L, whilev is outside L.
Concatenating7 and=ng, we obtain a path fromto w which does not contain the edgev; and
once more this contradicts our assumption thatis a bridge.

Finally we show that-w is the only edge tw from outside L. Suppose that there is an eslge
from outside L, where # v. By Lemma 3.3, there is a patiy to e from r which contains no

vertices in L, and therefore does not include the eglge Concatenating the edgew to g, we
obtain a path from tow that does not include the edg&. Again this contradicts our assumption

thatv-w is a bridge, and completes the proof.

3.5 The Main Result on Edge-Disjoint Spanning Trees

We now provide a necessary and sufficient condition for thebe tiwwo edge-disjoint spanning
trees in the graph G, with the same nqair, what is the same thing (by Theorem 3.1), for theere t
be no bridges in G. This is based on the following definition.

622



British Journal of Mathematics & Computer Scien¢®)4612-666, 2014

DEFINITION 3.1. Given a graph G with a loop tree T, entry edge of a vertexw in G is an
edge tow from some vertex # w. An entry edge of a loopL in T is an edge to some vertexn
L from some vertex outside L.

THEOREM 3.3. A graph G with rootr and loop tree T has no bridges (and therefore has two
edge-disjoint spanning trees with radtif and only if every vertex of G other thanand every
loop of T not containing, has at least two entry edges.

PROOF. It suffices to show that the condition above holds if anig if G has no bridge of either
type @ or (b), as specified in Theorem 3.2. Let T be a loop tre@,dind letv be a vertex in G,
with w# r. Since G has the rootthere is a simple path fromtow in G. Letv-w be the last edge
on this path; here we must have w. If w has indegree 1, themhas only one entry edge.\fis
the unique entry point of a loop L in T, amds not contained in L, andw is the only edge tw
from outside L, then L hasw as its only entry edge, and L does not contgsince otherwise it
could not contain the entry poimf). Conversely, suppose thatdoes not have at least two entry
edges. Since G has the roptandw # r, w has one entry edgew (with v # w); hencev-w is a
bridge of type 4). Likewise, if L does not contain and does not have at least two entry edges, it
must have one entry edge, saw. In that casev is the only entry point of L, andis not con-
tained in L, and-w is the only edge te from outside L (otherwise would have two entry edges
from vertices unequal tw). Thereforey-w is a bridge of typeh(), completing the proof.

3.6 Innermost Loops and Multiple Entry Points

Theorem 3.3 allows two entry edges to the same entry pbantamp. We now show that this is
not allowed for innermost loops, where we disregard Ieelis in taking a given loop to be
innermost. This result will be needed in our treatmenseiction 3.7 below, of a graph having a
unique loop tree.

LEMMA 3.5. A graph G with root, and with no bridges, and with at least one vertex other tha
r, must have at least one loop not contaimirgnd not a self-loop.

PROOF. Letvq be any vertex of G, other thanHerev] must have at least two entry edges, by
Theorem 3.3, and at least one of these is from a vertéxt(e@) other tharr, since G has no
multiple edges. Similarlyy2 must have at least two entry edges; and at least dhes# is from a
vertex (call itvg) other tharr, and so on. This produces a sequencef vertices, with an edge
from vk+1 to vk for allk > 1. Since G is finite, this sequence must eventuallyatepaw; = vj,
fori <j, so thawj-vj—1-...vj (=Vj) is a cycle C, not containing

Let B be the graph obtained from G by removing any edges whi¢éh lead tor. Here C is
contained in B, and therefore in some strong component L ah@L does not contaim since it
contains no edges which leadrtoThere are now two cases; L may be a strong component of G,
or, if it is not, it is contained in some strong componenGofThis must have as its only
additional vertex; and thusis its head and L is its body. In either case, & Isop in G, not con-
tainingr. Herevo # v1 in the above, by Definition 3.1, since the edge frgnto v1 is an entry

edge ofv1; so L is not a self-loop. This completes the proof.
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The condition that G have at least one vertex other tharclearly necessary here; indeed, if G
has just the vertex and no edges, then it has no bridges, and no loops.

THEOREM 3.4. Let G be a graph with root and with a loop tree T. If G has no bridges, then
any loop L in T, other than a self-loop, and containingmmei loops of its own, other than self-
loops, either containsor has at least two entry points.

PROOF. Let L be as in the statement of the theorem, excepitthas only one entry poimt and
does not contain. Since L is not a self-loop, it contains some verexw. By Theorem 3.3, L
has two entry edges; these are then edgesaandv-w. Since G has no bridges, it has two edge-
disjoint spanning treesqTand T, with rootr, by Theorem 3.1. Since1Tis a spanning tree, it

includesz, so that there is a simple patpfromr to zin T1. Sincez is in L, andw is the only
entry point of L,n; must enter L atv. Letn; be that part ofi; which leads fronw to z. Thenn;

is also a simple path, and thus does not incluéecept at the start; therefatg does not include
any loopbacks of L. Alsar; never leaves L, because otherwise it would have to re-erew,
sincew is the only entry point of L. Therefore, is completely contained in the body B of L.
Since this is true of aryin L, the union of alit;” over allzin L defines a spanning tree Tof B,
with rootw. Applying all these arguments t@,Twe obtain a spanning treeTof B, also with
rootw. The trees T and " are edge-disjoint, sincejTand T are edge-disjoint. It follows from

Theorem 3.1, applied to B (which has the neptthat B has no bridges. Since B contasgsw, it
now follows from Lemma 3.5 that B contains a loop L, neek-loop, withw not in L". Here L’
is a loop inner to L, contradicting our hypothesis, andmleting the proof.

A fundamental property of loop trees is that a loop containingaibtr cannot contain any entry
points at all; this is why that case is excludednfrbheorem 3.4. Indeed, a graph with no bridges
(such as, for example, a complete graph on more thanvéses) can easily have a loop
containingr.

3.7 Unique Loop Trees and Edge-Disjoint Spanning Taes

We now show that a graph with ragtand with a unique loop tree — that is, either one with no
loop at all, or one in which every loop has a uniqgue head — hay& at least one bridge, and
thus, by Theorem 3.1, cannot have two edge-disjoint répgntrees rooted at. The only
exception to this is a graph with just one vertex.

LEMMA 3.6. Let G be a graph with rootand loop tree T; let L be a loop in G, which contains
and let B be the body of L. If L has no bridges, then neidbes B.

PROOF. If L has no bridges, then it has two edge-disjoint spantrees T and B, rooted ar,

by Theorem 3.1. But  and T cannot contain loopbacks t¢ otherwise they would contain
cycles, and a tree cannot contain cycles. Thuafid B are also edge-disjoint spanning trees of
B, which shows that B has no bridges, again by Theorem 3.1.

THEOREM 3.5. A graph G, rooted at, with a unique loop tree T, and containing at least two
vertices, must have a bridge.
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PROOF. Suppose the contrary, so that G has no bridges. Since & st two vertices, it has
at least one loop in T, which is not a self-loop, by Lemn%a Glearly, any self-loop which is a
loop in T must be a leaf in T; let us remove from T angh leaves, producing T . Let L be a leaf
in T". There are now two cases. Suppose first that L doe<antainr; it then satisfies the
conditions of Theorem 3.4, and thus has at least two potrys, say andy. Therefore G has at
least two loop trees, since there is at least one oé tvith x and withy as the head of L. This
contradicts our hypothesis.

Now suppose that L containsso thatr is the head of L. Let B be the body of L, and consider a
bridgev-w in L, so that any path fromto w in L containsv-w. However, any path fromtow in

G must stay entirely in L; otherwise, it would havedeenter L through an entry point, and, since
L containsr, it has no entry points. Henwew would in fact be a bridge in G. This contradiction
shows that L, in fact, has no bridges; and, by Lemma 3ithenaloes B. Since L is not a self-
loop, it contains at least two vertices, as doeshrdfore, by Lemma 3.5 applied to B, it contains
a loop L", not containing, and not a self-loop. Here L" is a loop inner to L, caditting our
assumption that L is a leaf in T", and completing the proof.

The condition that G have at least two vertices is necessiacg a graph with just one vertex has
a unique loop tree but has no bridges. A self-loop, even ircdlsis, is not a bridge, since it is not
on the null path fromn to itself. Also, a graph with just one vertexloes have two edge-disjoint
spanning trees, namely;Twhich contains just and no edges, ancgE Tq1. Even though T and

To are equal, they are still edge-disjoint; they have nosilgeommon, since they have no edges
at all.

It is possible for a graph, rootedratand having an outer loop which is a self-loop, to have two
edge-disjoint spanning trees, both rooted, @&s shown in Fig. 3.2. It is also possible, in a graph
having two edge-disjoint spanning trees, for a loop which is notreammost loop to have a single
entry point, as, for example, the loop L2 in Fig. 3.3. &thbcases, one spanning tree is shown
with bold gray arrows, and the other one with bold blackvesr edges with light black arrows are
not in either spanning tree. Note that every vertex ah ed these graphs, other tharhas at least
two entry edges, althoughhas no entry edges at all.

L2

Fig. 3.2. Edge-disjoint spanning tree examplesig. 3.3. More examples
In the case of a graph G with multiple edges, the most wesag here is that, if G has a unique

loop tree and contains at least two vertices, it rhase an edge-w which is either a bridge, or
would be a bridge if all other (multiple) edges frormo w were removed from G.
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4 Feedback Vertices

In this section, vertices are what are often called nodasggraph. Aleedback setis a set of ver-
tices in a strongly connected graph, such that evergdgcthe graph must contain at least one
vertex in the set. If a feedback set contains just onexé/, then V is known as feedback
vertex. The discovery that every graph whatsoever has an inhénectuse of loops within loops,
representable by a loop tree [1], raises the question asabswch a loop tree must look like, in a
graph having a feedback vertex.

We here provide a necessary and sufficient condition §paph G to have a feedback vertex. The
condition is that G have a loop tree T with respect to lwl@c has no parallel loops and no
conditional loops, in a sense which we define; and teamiitermost loop L, which must be unique
to T, contains a vertex which covers every other vemex, as this is defined in [3]. We
emphasize that our condition does not provide any improvemehe iefficiency of finding all
feedback vertices in a graph; indeed, it is already pleswildo this in linear time [4]. Rather, our
condition becomes a way of visualizing graphs which do, ahithvdo not, have feedback
vertices, in order to improve our informal understanding efrth

Feedback vertices, and feedback sets in general, hawtéampapplications in logic design [3].

They are also useful in the construction of cut poirgspart of the proof of correctness of a
program [10]. We have done previous work [11] which attertptlevelop what would be called,
using the terminology above, a “good” feedback set forphipose.

4.1 Graphs with Feedback Vertices

In order to motivate our theorem, let us first look at a fgaphs which have feedback vertices.
Clearly, if a graph G contains one and only one cycle #very vertex in that cycle is a feedback
vertex. More generally, if G has only one strong componenthose body is a dag, then the head
of L is a feedback vertex. There are, however, more gesecal graphs; as, for example, that of
the matrix product program of Fig. 4.1. Here there hreet nested loops, as indicated by the
structured program at the top. This is converted into an unstedghuogram, whose flowgraph is
then given. It should be clear, however, that the vertemtaging the statement S =
S+A[LK]*B[K,J] is a feedback vertex. This example may deneralized to allow any number of
nested loops, rather than just three.

4.2 Graphs without Feedback Vertices

We now look at some conditions under which a graph cannot hawzlbafek vertex. The most
obvious of these involves what we may call parallel lodpet;, is, two or more loops in a loop tree
that are siblings (that is, they have the same pareinfe Such loops are strong components of
the body of their common parent, they are disjoint and tbatain disjoint cycles; so a graph
having parallel loops cannot have a feedback vertex.

If T contains no parallel loops, then there can be at m@snhon-trivial strong component Lof
G. The body B of L1 can then contain at most one non-trivial strong compobgnand so on.
Every loop tree of such a graph, therefore, is line#nérfollowing sense.

626



British Journal of Mathematics & Computer Scien¢®)4612-666, 2014

DEFINITION 4.1. Aloop tree T of a graph Isear if there is somea > 0 such that T comprises
nloops Ly, ..., Ln with each |z being an inner loop withinjL1 for 2<i <n.

Another such condition involves a loop that is not always doren\its parent loop is done. We
refer to this as a conditional loop, since the most comman &biit is an inner loop L™ within an
if-statement in its parent loop L. There is thus a cl@a L which is disjoint from L". Since L’
also contains at least one cycle, there are two digjgties in the graph, and therefore there can-
not be a feedback vertex. It will be necessary, however gta stightly more general definition of
a conditional loop; instead of requiring that C be in L, merely require that C be not disjoint
from L.

FOR I =1 TO N |
FTOR T =1 TO N {
S=0
FORK=1TO N
S = S+A[I,K]*B[K, J]
C[LJ] = §
}
}

(note: since clearly
H > 0 here, the for-
loops above may be
implemented as post-
test loops as below,
rather than the
usual pre-test loop)

I=1
1 J=1
2 S=0
K=1
3 S = SHA[TI,K]*B[K,J]
K = K+
IF (K <= H) GOTO 2
C[I.J] = §
J = JH1
IF (J <= H) GOTO 2
I=TH

IT (I <= H) GOTO 1

Fig. 4.1. A matrix-product program with a feedback vertex
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We may justify this choice informally as follows. Swge that H is the head of L, and that H is
immediately followed by a vertex N which is a coratii@l exit from L. Thus it is possible to enter
L at H, go to N, and take the conditional exit without doingHére, then, L" is a conditional loop
in an informal sense, since L can be entered without doin@ih the other hand, if L is an outer
loop of the program, and there is no cycle in L which igoitis from L", there can still be a
feedback vertex in L". However, now suppose that L itsetfontained in another loop K. There
will then be a path which starts at the head X of K, goesugir H and N and back into K, and
eventually back to X. This will be a cycle, disjointdrd.", and so G cannot have a feedback
vertex.

Accordingly, we make the following definition.

DEFINITION 4.2. A conditional loop in a loop tree T of a graph G is a loop L in T, such tha
there is a cycle C in G, disjoint from L, but not disjdiaim the parent of L in T.

The two kinds of conditional loop are illustrated in Figs.a&hd 4.3. In Fig. 4.2, the inner loop is
conditional in the ordinary sense; it is not done at\within the outer loop, when the cycle
involving cond1 andcond?2 is done. The structured form of this loop is shown at thdefbpa
while loop inside arif statement, which is inside anothehile loop, as here, always leads to this
kind of conditional loop. In Fig. 4.3, the loop L3 is not conditioimathis sense, but it is still
conditional because there is a cycle, A-D-E-A, whichisgptht from L3, but not disjoint from L2,
the parent of L3.

WHILE (condl)
IF {(cond2)
WHILE (cond3)
£(x)

1 IF (MOT comndl) GO
IF (MOT cond2) GO

2 IF (MOT cond3) GO
fix)
GOID 2

3 {done )

Fig. 4.2. A conditional loop
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4.3 Loop Covers

We now extend some terminology used in [3]. A ventag said tocover another vertey, in a
graph G, if all cycles in G which contaynalso contairx. A feedback vertex for a graph, then, is
one which covers every other vertex in the graph. We hefireeda local version of this.

DEFINITION 4.3. A vertexx is said tacover a looplL if it covers every vertex in L.

We will be concerned exclusively with vertices which coveemost loops. In particular, if such
a loop L has exactly one entry point H, then we can easidythat H covers L. In fact, lete a
vertex in L, and let C be a cycle containingf C is not entirely contained in L, it must contain H
because H is the only entry point of L, so that C can enterly-through H. If C is entirely con-
tained in L, then again C must contain H, because L isr@tmost loop and so the body of L is a
dag, which cannot contain the cycle C.

There are, however, other ways that a loop can be cobgrede of its vertices, as shown in Fig.
4.4; here that vertex is marked as V, in each case.tNateeven if a loop has only one exit point,
that point might not be a loop cover; thus the vertar Kig. 4.5, for example, does not cover A,
since the cycle A-B-C-A contains A but does not contain Xother example is shown in Fig.4.6;
this is the same graph that was given in Fig.4.3, exteptB, rather than D, is now the head of
L2. This time, there is no L3, because the body of L2, ®i#ts its head, is a dag. Here there are
two disjoint cycles, namely A-D-E-A and B-C-F-B, having rempty intersections with L2; so
no vertex can cover L2.

4.4 The Main Result on Feedback Vertices

THEOREM 4.1. A graph G has a feedback vertex if and only if it has a teepT for which all
of the following are true:

Fig. 4.3. Another kind of conditional loop
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Fig. 4.4. Examples of a loop being covered by one of its vieds

L]
Fig. 4.5. Loops without loop covers Fig. 4.6. More loops witholoop covers

(a) G has no parallel loops (and therefore T is linear);
(b) G has no conditional loops;
(c) The innermost loop of T contains a vertex V which cevefas in Definition 4.3).

PROOF. We saw in section 4.2 above that, if G has parallel lawps,conditional loop, it cannot
have a feedback vertex. Also, if G has such a vertekhéh ¥ must be in the innermost loop L, in
any loop tree. This is because it must, in particulacdog¢ained in every cycle in L; and we know
that L contains at least one cycle, because, as a Ildsman-trivial strongly connected. Here V,
being a feedback vertex, must, in particular, covefThus the conditionsaj-(c) above are
necessary; we now show that they are sufficient.
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As in Definition 4.1, we denote the loops by through L. Let H be the head ofjl-for 1<i <n,
and let C be any cycle in G. By Lemma 3.1, there isestgsuch that C containsyand is
contained entirely in k. We now show, by induction dnthat C has a non-null intersection with
Lj for k<i<n, and thus, in particular, withr- By hypothesis, this holds for= k. In general, if C
has a non-null intersection withj,Lbut not with Li+1, then lj+1 is, by Definition 4.2, a condi-
tional loop, contrary to hypothesis. Thus C has a nohintdrsection with |y, and therefore
contains V, since V coversL This completes the proof.

4.5 Feedback Vertices and Multiple Loop Trees

The above theorem places strong restrictions on the leeprirthis does not, however, preclude a
graph with a feedback vertex from having more than onetteep Indeed, it might have two loop
trees with different heights, as shown in Figs. 4.7 a@dHere, if H1 is the head of L1, as in Fig.
4.7, there is no inner loop; if H2 is the head of L1,raEig. 4.8, then L1 has the inner loop L2.
However, in both cases, the loop tree is linear; and gabsek vertex F (or H1, for that matter) is
contained in the innermost loop, in each case, and cthetrtoop.

Fig. 4.7. Multiple loop trees Fig. 4.8. Furthlemultiple loop trees
4.6 Further Investigations

The determination as to whether a feedback set ofrsizeists, within a given graph, is NP-
complete [12]. By contrast, a loop tree, as definedétiee 1 above, may be found in polynomial
time. (The determination of all loop trees remains eepdial, although for a low-level reason:
the total number of loop trees for a graph may have expiahsize; indeed, every permutation of
the vertices of a complete graph corresponds to a teepfar that graph.) In view of these facts,
we will start by considering applications of feedback sets.

Two such applications are mentioned in [4]. The first isceomed with the graphs of logic
circuits, and is treated in [3]. The second, treated in [i&0djrectly concerned with flowgraphs,
and is also related to some of our own earlier work.t&%e this up here at some length, and, in
particular, we question whether the “best” feedback setaincbntext, is the one with minimum
size.
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Also, in this section, we relate inner loops, in the sefisection 1 above, to Smith and Walford’s
sets F, @&, and @R, introduced in [3]. We show that any graph with alfesck vertex has just one
loop in an extended sense, although there might be moretialoop in its loop tree. We obtain
a connection, in a special case, between loop trees arnodilcept of depth first numbering. Final-
ly, we use loop trees to estimate the size of a minfieelback set.

We note the following terminological differences amanmgse papers:

Garey and Tarjan [4] Vertex Arc Cycle
Smith and Walford [3]  Vertex Arc Loop
Alternative notation Node Edge Cycle

4.7 Program Correctness and Feedback Sets

Suppose we wish to prove the correctness of a program haviagrefigivgraph. We assume that
our program is not structured, and may contain arbitraryogggtements; in loop tree notation,
there might be more than one loop tree for the graph. Thisomaccomplished in eight steps (see

[11]):

(1) Identify the terminal vertices of the graph and assign &rasesgertion to each one; this is
an assertion concerning the variables of the program whitheld at the time that that
exit is taken.

(2) Identify the initial vertex of the graph and assign armryeassertion to it; this is an
assertion concerning the variables of the program which hldt when the program
starts. (If the graph has more than one initial vertee, dntire proof of correctness is
redone for each initial vertex.)

(3) Make a statement of correctness of this program: iitstat the initial vertex with the
entry assertion holding, thea)(it will not loop endlessly; k) it will not try to execute
any statement S at a time when S is not well defiaad; €) when it gets to a terminal
vertex, the corresponding exit assertion will hold.

(4) Identify intermediate assertion points, or what Manna [#lk cutpoints; there must be
one such point in every cycle of the flowgraph. Associaten@mmediate assertion with
every such point. Define an assertion point of the prograraither an initial vertex, a
terminal vertex, or a cutpoint.

(5) Identify the verification paths in the program; these araspitbm one assertion point to
another, with no assertion points in between. The assextsgwciated with the first (last)
statement in a path is called the initial (final) aseartf that path.

(6) State the verification conditions of the program, one assatiatth each verification
path. Such a condition says that if the path is starteditwithitial assertion valid, then it
will not try to execute any statement S at a time w8eis not well defined, and that,
when it reaches the end of that path, its final assertitbbevivalid.

(7) Prove all the verification conditions.

(8) Prove that the program terminates. (The techniques fer ake relatively simple
extensions of those above; we omit the details.)
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Feedback sets arise in step (4) above, since the conditianset of cutpoints is that every cycle
in the flowgraph must contain at least one cutpoint. Apfrway to choose cutpoints is to choose
them as the destination points of reverse edges in theHtyaelative to some ordering of the
vertices (normally the order in which the corresponding programitien).

4.8 Feedback Set Measures

Let us now consider what makes a “good” set of cutpoint®eealback set. The treatment given in
[3] concerns finding such a set with as few verticepeassible; that of [12] shows that this

problem is NP-complete. There are two possible generabagipes to this situation. We may try
to find a solution to the problem which, although exponentiahéngeneral case, “appears to be
quite efficient for large graphs arising in practical laggtions” (see the abstract of [3]). Or we

may question whether, for the purposes of program coesstproof, we actually want to

minimize the number of vertices in a feedback set.

In [11] we address the problem of finding a “best” set of inegliate assertion points, by which
we mean one which minimizes the total length of allfieadion conditions as described in step
(6) above. Since these are what have to be proved, we woulthdiikegotal size to be as small as
possible. Provided that we use internal size only (thabtscounting the lengths of the initial and
final assertions in each verification condition, but only the lengih what arises from the
statements in the path), we show that this is minimmedhoosing, as cutpoints, exactly the join
points; that is, those of indegree greater than 1, in tgrgm. In the present context, this has the
further advantage that such points may be determined imrakydiaim the flowgraph.

4.9 Graph Partitions and Loop Trees

In [3], as part of their algorithm for finding minimald@back sets, Smith and Walford introduce
sets F, @, and QR. Here F is a set of vertices of the graph G, and fBes partitioned into &
and QR (thatis, G n GR =@ and G O GR = G). A vertex is in G if and only if it is contained

in at least one cycle of G which also contains a vertéx iand is not contained in any cycle of G
which does not contain a vertex of F.

We may note first that F is a feedback set of a styonghnected graph G if and only if the
corresponding & = G (that is, ® = @). If F is not a feedback set, then there existeastlone

cycle C in G which does not contain any elements of &,aay vertex V in C cannot be infG
and so must be ing If F is a feedback set and V is a vertex in G, theis ¥ontained in some

cycle (since G is strongly connected); any cycle doirtg V must contain some element of F, by
definition of a feedback set, and so V is ig,@us implying that § = G.

Now let the entire graph G be strongly connected, sottistin outer loop, in our sense. Let F be
a one-element set, containing only the head H of G. Therdasists precisely of all vertices in

inner loops of G. Note that if V is in an inner loop, thap is in the body B of G and cannot
contain H, so Vis not in & Conversely, if V is not in § then V is in some cycle of G that does

not contain H. That cycle is completely contained infj thus in some strong component of B,
that is, an inner loop of G.
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We may extend this example by including, within F, a sinhlesen head for each inner loop, in
addition to H. The correspondingrRGhow consists precisely of all vertices in all seconalle
inner loops of G. Continuing this process recursively,anéve at a set F containing the head of
every loop in some specific loop tree of G; and this tinge=G@. This is, therefore, one way of
getting a feedback set F (see also section 8 below), althbiggh is not necessarily of minimum
size.

4.10 Feedback Vertices and Single Extended Loops

Given anyn > 0, we may construct a graph havimgested loops, and therefore with a loop tree
of heightn, but still having a single feedback vertex, as noted iricsedt9 above. Despite this,
however, every graph having a feedback vertex must haveamtheonly one “loop” L in an
extended sense, namely that the head of L is not retgsn entry point of L. As an example,

consider the matrix product program of Fig. 4.1, namely:

=1 | FORI=1TON{
1 J=1 FORJ=1TON{
2 S=0 S=0

K=1 | FORK=1TON
3 S = S+A[LK]*BIK,J] | {S = S+A[l,K]*B[K,J]}

K = K+1 | cllJ=s

IF (K <= N) GOTO 3 }

SINEE | }

J=J+1 OUTPUT "END"

IF (J <= N) GOTO 2

I=1+1 |

IF (I <= N) GOTO 1

OUTPUT "END" |

This program may be rewritten as follows:

=1 | =1
GOTO 1 GOTO 1
3 S = S+A[l,K]*B[K,J] | WHILE (TRUE) {
K=K+1 | S = S+A[l,K]*B[K,J]
IF (K<=N) GOTO 3 K=K+1
ClllJ]=s | IF (K <= N) CONTINUE
J=J+1 CillJ=s
IF (3 <=N) GOTO 2 J=J+1
I=1+1 | IFA>N){
IF (1> N) GOTO 4 [=1+1
1 J=1 IF (1> N) BREAK
2 S=0 1. J=1
K=1 I }
GOTO 3 S=0
4 OUTPUT "END" | K=1

}
OUTPUT "END"
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It is not difficult, although a bit tedious, to check tbgic of the two programs above and verify
that they are the same. The head of the “loop” lthenrewritten program, is the statement with
label 3, and this is not an entry point of L. It should be cliegam this example, that rewriting a
program in this way does not necessarily make it eésianderstand, even though here we are
replacing three loops by one. Also, although the statemigntlabel 3 is also a feedback vertex
for the graph, that fact does not help in the process ofgahie program correct. Even though
there is now only one intermediate assertion point, the tetajth of all the verification
conditions of the program actually increases when this ehlisimade, as noted in [11].

In general, however, any graph with a feedback verteray be rewritten in this way. Here V
becomes the head of L; with respect to V, the body ofd.dag, because otherwise it would have
a cycle not containing V, contradicting the definition ofeadback vertex. However, in many
cases (as above), V is not an entry point of L, so taphgdoes not necessarily have a loop tree of
height 1.

4.11 Depth First Numbers and Loop Trees

The (preorder) depth first numbers (DFNs) of the verticks graph (also sometimes called
discovery times) are in the sequential order in whicly Hre encountered in a depth first search
(DFS). Thus the DFN of thkth vertex to be encounteredksDepth first numbers are treated in
[4], and it is natural to ask whether there are connecbehseen them and loop trees. At least in
one special case, there is, indeed, a strong connection.

Suppose that the loop L has no exits, that is, edgesdroeentex in L to a vertex outside L. (This
is uncommon in flowgraphs, although it frequently occurstireiokinds of graphs, such as call
graphs.) Then there exist integérndj, for any DFS, such that the DFNs of the vertices afé
preciselyi, i+1, ...,j. Herei is the DFN of the first entry point of L (call it H) be encountered in
this DFS. No vertices of L, therefore, are encountereorbéd, and thus the DFN of such a vertex
cannot be less than Since there are no exits from L, the only way the D& leave L is by
popping H from its stack. Before this is done, eveggtax in L must be encountered, since L is
strongly connected. ffis the largest DFN of a vertex in L, therefore,\aitices of L, and only
these vertices, have DFNs in the range frahroughj.

4.12 Estimating the Size of a Minimal Feedback Set

We finally introduce lower and upper bounds on the size ohinimal feedback set, as an
extension of the process of finding loop trees.

THEOREM 4.2. Let G be a graph having a loop tree T witliertices,m of which are leaves of
T. Letk be the size of a minimal feedback set for G. Timetik < n-1.

PROOF. We first note that any two leaves of T represent disjpubgraphs of G. In fact, let U
and V be leaves, and, among all common ancestors ol alet X be the one farthest from the
root. Let X represent a subgraph with body B, and let Yhia¢ ¢hild of X which is also an
ancestor of U. By the choice of X, we see that Yiags an ancestor of V, and therefore X has
another child, Z, which is an ancestor of V. Since Y @ndre children of X, they represent
distinct, and therefore disjoint, strong components dbiBce U and V are descendants of X and
Y respectively, they also represent disjoint subgraphs.
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It follows that them leaves of T represent mutually disjoint strongly cote@sets, each of which
contains at least one cycle. Any feedback set of G narghim one vertex in every such cycle,
and its size must therefore be at leasOn the other hand, every vertex in T, other tharrabg
represents a loop with a head, and any cycle in the graphpass through one of these heads.
The set of alh—1 of these heads, therefore, is a feedback set forn@leting the proof.

If G has more than one loop tree, then, by repeatedly iagpilye logic above, we see thatand

n may be taken here, respectively, as the maximum valoeasid the minimum value of, over

all loop trees of G. Such further tightening of these kdeuhowever, cannot be expected to go too
far, in light of the fact that the problem of determining aimum feedback set, in general, is NP-
complete ([12], as noted in [4] and [3]).

5 Clustering Trees

5.1 Loop Trees and their Generalizations

We shall need two generalizations of the concept of atleap as introduced in Section 1 above.
Suppose first that we were to include trivial, as welhan-trivial, strong components in the tree,
at every level. This would make the construction simpher more general, in one sense; but the
name “loop tree” would no longer be appropriate, since trati@ng components are not loops.
Hence we use the tergeneralized loop treefor this case. Also, any graph has at least one loop
tree, but we will here be concerned only with strongly cotete graphs. For such a graph G,
every loop tree has G as the root, whose only child is agalini& redundancy is unnecessary in
our context, and we therefore speak oflilasic loop treeof a strongly connected graph, namely
the subtree whose root is the single child of the actual @mnbining these two constructions,
we obtain thébasic generalized loop tre€or BGL tree) of a strongly connected graph.

5.2 Clustering Trees

Our object is to compare these BGL trees with what Tdfj@hcalls decomposition trees; these
have applications in cluster analysis. Since loop tressialolve decompositions, we will use a
separate terntlustering trees to refer to the trees studied in [13]. It is assunted e have a
strongly connected graph G in which all edges have distiaights. The leaves of the clustering
tree are the vertices of G, and we build this tree filoenbottom up, adding edges in increasing
order by weight. Whenever the addition of an edge causes tmorer components A ..., A to

coalesce into a single component A, we make A the parent,af.AA in the tree. When the last
edge is added, the tree is complete, with G as its root

Clustering trees and loop trees have very different motingtiClustering trees are used in cluster
analysis of data with an asymmetric similarity measurhe “distance” from A to B is not
necessarily the same as that from B to A (as, for gl@nwith flight times between cities,
affected by prevailing winds). There is, however, alwajdistance” from every vertex to every
other, and these distances, or weights, are alwatysalisThe aim here is to find clusters, that is,
groups of vertices, every one of which is close to evéingroone. Loop trees, by contrast, are
used in the analysis of flowgraphs. The only obvious natfodistance, here, is distance of one
statement from another in a program. However, here thiEe®in the desired groups, or loops,
might be far away from each other in the program, and our tasKirsd the loops.
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Nevertheless, these two kinds of decomposition treea fgraph G, have several similarities. In
each of these trees, the root represents G; evetgxvierthe tree represents a strongly connected
subgraph of G; and, if Nis the parent of N in the tree, then ¢ contains G, where N

represents g and N represents & It therefore becomes a matter of mathematical irteéoes
determine relations between these two kinds of tree.

5.3 Top-Down Construction of Clustering Trees

We find it useful to provide an alternative definition oflastering tree. First we notice that, in
the construction of such a tree, the actual values of the weightaever used, but only their
order. Since the weights are all distinct, their ordemisjue. Formally, we may define adge-

ordered graph as one wittn edges given in the order, €, ...,en. A graph in which the edges

have distinct weights may then be identified with an edgereddgraph, in which thkth smallest
edge, in order of weight, g, for 1< k < n. In what follows, therefore, we ignore weights, and

assume that we have an edge-ordered graph.

Secondly, our definitions become more precise when ourigrdmiilt top-down rather than
bottom-up. When building the tree bottom-up, we eddirst, thenep, and so on. When building

it top-down, we start with all edges in the graph; thenremoveey, thenen—1, and so on. At
each stage, then, we have left only the edgesp, ..., ek for somek; and the strong components

of the graph, with all the original vertices but with otihgse edges, are the leaves of that part of
the tree which has so far been constructed, from the top down.

Suppose now that we remoeg, leaving only the edgesy, e, ..., ek—1. Hereex was in some
strong component, which, at this stage, is a Yfed&emovingek can affect only, and no other
strong component at this stage. It might happenuhatstill strongly connected, even widy

removed, in which case the tree does not change at this $thgetree does change, it is because
v, with e removed, now has more than one strong component; each of #tethés stage,

becomes a child of.
5.4 Decomposition Trees of Cycles

Our first question is that of finding conditions on a gr&hwith a BGL tree T, for which every
clustering tree is the same as T. To simplify the statds of our theorems, we make the
following definition.

DEFINITION 5.1. An edge-ordered graph G, with a BGL tree T, is saichawe theloop
clustering property if its clustering tree is the same as T.

We now have a surprisingly simple answer to the tipresve raised.

THEOREM 5.1. A graph G, with a BGL tree T, has the loop clustering ergpwith any edge
ordering whatsoever if and only if G is a single cyclegoy length).

Of course, if G is in fact a single cycle, it hasumique BGL tree; in the general case, the
correspondence between the two types of tree is spexdiparticular BGL tree.
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PROOF. First suppose G is a single cycle, and consider a B&.T for G, with G as the root.
Regardless of how we choose a hbddr G, there will be one and only one edge G which
leads toh; and heree is the only loopback in G. If we remoedrom G, producing the body B of
G, then B is a dag, and thus every child of G in T isaki Now consider the clustering tree T™ of
G, built from the top down. No matter which edge is remdiret| the graph G, with only the re-
maining edges, is a dag, and thus every child of G in dls@strivial. Thus T and T" are the same
in this case, and G, with T, has the loop clustering prppert

Now suppose that G, with T, is not a single cycle. Stade strongly connected, it must contain at
least one cycle. Of all cycles contained in G, let @ihe of shortest lengjh Suppose first thgt=

1, so that C is a self-loop, involving an edgéom a vertexv to itself. Since G is not a single
cycle, there must be another vertex in the graphws&Since G is strongly connected, there are
paths fromv tow and fromw to v, so thatk, the number of edges in G, is at least 3. We will now
show that G has at least two different clustering treestradicting our assumption that a
clustering tree is always the same as T.dgetep, ..., ek be the edges of G. §=eq, theneis
removed last, in the top-down construction. At the secorg $tam the end, C is a leaf, and then,
at the last stagey, becomes a child of C. On the other hand # ek, wherek # 1, as we have

seen, there is removed first, in the construction. Since the cyalelving v andw has not yet
been removedy can never become a child of C, whose single edge asrbenoved at the first
stage. Thus these two clustering trees are different.

Finally suppose thgt> 1, and let C u3 -~ u2-...-Uj = u1. Since G is not C, there must be at
least one edge” in G which is not in C. We argue that there must alsatbeast one vertew
which is not in C. Otherwise& is ug— up for somea andb. By combininge” with the path within
C from up to uy, we obtain a new cycle C” whose length, by the constiucis strictly smaller
thanj, contradicting the choice of C. Since G is strongly cotat there is a pathin G fromug
tow; let uj be the last vertex in which is also on C. Sinag = uj, we can always assume
here. Sincew is not on C, so thatv is notuj, there is a vertexv’ (possiblyw” = w) which
immediately followsuj in 7. Thus there are edge$§| = uj - Uj+1 (whereuj+1 exists since # j)
ande2 = uj-w in G. Heree is part of a cycle C’, since G is strongly connectad] C'# C
since C” containg/, which is not on C by the choice gf Also,e’1 is in C but not in C", while
e’2isin C" but not in C. Therefore, in the top-down precés’ is removed first, then C is bro-
ken but C” remains, while & is removed first, then C” is broken but C remains. Haray is

on both C and C’; so, as before, we have a contradibeoause G, with T, has at least two
different clustering trees. This completes the proof.

5.5 Bottlenecks

Theorem 5.1 shows us that most edge-ordered graphs do ndhedwep clustering property. We
can ask, however, whether a given graph has any edgengrag all, for which it has that
property. That this is not true for every graph may Endeom Fig. 5.1. If A is the start node,
then C- A and E- A are the loopbacks, and the remainder of the graphdag; and thus this
graph has a unique BGL tree T, which has every individeidéx as a child of G, which is at the
top. Now consider the top-down order in which edges areved If we remove A B, B C, or

C- A first, the strong component {A, D, E} will remain the clustering tree T". If we remove
A-D, D-E, or E- A first, the strong component {A, B, C} will remain in T". Neer of these
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components are in T, as we have seen; so no edge ordetimg gfaph has the loop clustering
property.

Consider now Fig. 5.2, which is much like Fig. 5.1 excepttfie vertex F. This graph has a

unique BGL tree T, very much like that of the graph of Bid. Suppose here that, in forming the
clustering tree T', we eliminate the edge- R first. The resulting graph is a dag (it has no
directedcycles, although that entire graph is an undirectetery€herefore we can eliminate the

remaining edges in any order, and T~ will be the same a4 important difference between the
two graphs is that, in Fig. 5.2, we have an edge (namely)Awhich is contained iBverycycle

of the graph; in Fig. 5.1, we have no such edge. This leatisthe following definition.

DEFINITION 5.2. An edge in a rooted graph G, with raots abottleneck if it is contained in
every cycle within G that contaims

The justification for the name should be clear; if you start gbu cannot get back toexcept
through the bottleneck. Bottlenecks are related to xesers [3]; a vertex is said to cover the
rootr of a rooted graph G, if all cycles in G which contagiso contairx. Here we are requiring
that all cycles in G which contaimalso contain an edge (that is, the bottleneck), ratherativen-
tex.

Bottlenecks are also related to the concept of a bridgefased by Tarjan [13]; that is, an edge

= u-V such that every path fromto v must go througle. In particular, a bottleneck in a strongly
connected graph G is always a bridge in this sense; for sugposontrary. Then there is a path
fromr tov that does not contam Since G is strongly connected, there is then a sipgtler” in

G fromv to r which does not contaie (otherwise it would go back tg and it would not be a
simple path). Combining andz’, we would obtain a cycle in G, containingbut not containing

e, contrary to hypothesis. On the other hand, not evedgeéris a bottleneck; thus there are no
bottlenecks in the graph of Fig. 5.1, and yet B, B-. C, A~ D, and D- E are all bridges.

Often a graph G has a bottleneck for low-level reasonsekample, if there is only one edge
leading fromr, then that edge is clearly a bottleneck. Also, if G hasammkonly one loopback,
then that loopback is a bottleneck, for a similar easiowever, these are not the only kinds of
bottleneck, as may be seen from Fig. 5.3. By followirthee R-A-C, R-B-C, or
R-A-B-C by either &GD-E-F-R or C-D-G-H-R, we obtain a cycle. These are the
only simple cycles here which include the root R, andCCis the only edge which is on all of
these, and therefore the only bottleneck.

5.6 The General Loop Clustering Property Criterion

If G is strongly connected, withbeing its head, and having a BGL tree T, we referiiotdeneck
as anouter bottleneck if it is not contained in any inner loops that G mightéhan T. Not all
bottlenecks are outer, as we may see from Fig. 5.4, whibtle same as Fig. 5.3 with the loops L1
and L2 shown. Here GD is contained in the inner loop L2, and is therefore atouter
bottleneck. (This graph actually has a further inner loogctwis either {B, C, D, G} or {A, C, D,
E}, depending on whether A or B is taken as the head of L2.)
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LEMMA 5.1. Let G be a strongly connected rooted graph with roand having an outer
bottlenecke. Let B be the body of G, and let G" be the graph obtdireed G by removinge.
Then the strong components of G™ are the same as those of B

PROOF. The rootr is a trivial strong component of B. It is also aiil strong component of G’,
because otherwisewould be contained in a non-trivial strong component o&i& hence in a
cycle of G containing; and such a cycle must conta&nby Definition 5.2, and is therefore not in
G’. Any strong component L of B, other than},{is a maximal strongly connected subset of B,
and cannot contain. Becausee is an outer bottleneck, it is not contained in L; theeefo is
contained in G". It remains strongly connected, and it is absamal strongly connected in G
(and therefore a strong component of G”). This is becamgestaongly connected graph L',
contained in G” and containing L, could not contaibecause is a trivial strong component of
G’; and it would remain strongly connected in G, and thus itoBtradicting our assumption that
L is maximal strongly connected in B. The trivialostg components of G” consist of all vertices
which are not in non-trivial strong components of G’. Skhare, therefore, exactly those vertices
which are not in non-trivial strong components of B; sodl@snponents are also the same in G
as they are in B. This completes the proof.

It should also be clear that the concepts of a bottleneck and embmiitieneck are immediately
extensible to loops within a BGL tree of G, in which tbet of every such loop is taken to be its
head. This extension is necessary in stating the mairt céghls section, as follows.

THEOREM 5.2. Let G be a strongly connected graph with a BGL fedhen there exists an
ordering of the edges of G, with respect to which G haddop clustering property, if and only if
every loop in T has an outer bottleneck.

B F D

. lf— e

l\ /1 S}

* — § if—
Fig. 5.1. Loop clustering property example Fig. 5.2. Another example
Da
E / T\
Ci OG

Fig. 5.3. Bottlenecks and outer bottlenecks
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Fig. 5.4. Another example

PROOF. Let T be a BGL tree for G in which every loop has an ohtatleneck. As usual for
trees, we define the level of a vertex in T as its degdrom G (the root); and a level order of the
vertices of T is an ordesy, v2, ...,Vj in whichvy is the root, followed by all vertices at level 2 (in

arbitrary order), then all vertices at level 3, and sdron.1<i < |, letxj be an outer bottleneck of
the loop represented lwy, and now choose the ordering, e, ..., ek of the edges of G in such a
way thatex = X1, ek—1 = X2, and so on, so that in geneegl-1-j = Xj. Usuallyj < k here, and the

remaining edgesy, €2, ..., ek may be chosen in any order.

Consider now the top-down construction of the clustering tre®rTG, in this order. We first
eliminateek = x1, and, since this is an outer bottleneck for G as a whaere left with the graph
G’ as in Lemma 5.1. By this lemma, G” has the samagtomponents as does the body B of G;
and all these become children of G in T', exactly abk.iNow we eliminatesk—1 = x2, which is

an outer bottleneck for some non-trivial strong componeat B. Here L is an inner loop, and,
sincex2 is an outer bottleneck for L, we are left with a graph G" whsclike G™ as in Lemma
5.1, but applied this time to L. By this lemma, G" flas same strong components as does the
body B” of L; and all these become children of L in &actly as in T. We now proceed to
eliminateex_2 = x3, and so on. Because of the level ordering of the verticEsthie parent L of
any such vertex L is added to T" before L is. \déte an outer bottleneck of L, and 1étbe an
outer bottleneck of L". Whew is eliminated, the strong components of the body ofricluding

L, become part of T', so that the same can happen whénv is later eliminated. After
eliminatingxy throughxj, the only remaining vertices in either T or T" aveial, and no further
building is done, so thatinfact T=T".

Now suppose that some loop L in T does not have an bat#eneck; we show that no ordering
e1, €, ..., e of the edges of G leads to a graph having the loop clusteramgrty. Assume the

contrary, so that T = T” for this ordering. Since L is jrtTs thus also in T". Ldatbe the smallest
integer such that, in the bottom-up process, wégrep, ..., ¢ have been added, L is included

among the strong components produced so far. Therefore,ayhep ..., ej—1 have been added,
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L has not been so included, but addéggauses L to be included. Consider now the remainder of
the process of adding+1, €+2, ..., €. This process only combines existing strong components

into larger ones; it cannot affect those parts of T whimhe already been constructed. When the
process is finished, it produces T, which, by assumpisathe same as T. Within T, however, the
children of L are the (trivial and non-trivial) str@ components of the body of L. Therefore, when
L is first included by addingj, these same strong components must already have bean path

of T" that had been constructed so far.

We now note thagj cannot be in any non-trivial strong component of the body, abr can it be
outside L, since adding, in either of those cases, could not produce L by combitsngtrong
components. Howevegj, by assumption, is not an outer bottleneck of L, and therdfeere is
some cycle C in L, containing the head of L, that does noaitogt Thus L cannot, in fact, be
produced whergj is added, since C would have to be included in what is prdduieis
contradiction completes the proof.

5.7 Multiple Null Node Expansions

Using the terminology of Theorem 5.2, we see that therestaongly connected graphs for which
T  is never the same as T. We might ask, then, whetioéra& graph G might be expanded to form
a graph G” for which T" = T for some choice of ordefghe edges of G". Ideally, we would like
G’ to be just as efficient as G, both in space and, timder some reasonable interpretation of
these. In fact, this can always be done, using a genei@tizdtthe idea of a null node expansion.
Given an edge—w in a graph G, aull node expansionof G is a graph G” obtained from G by
adding a new vertex removing the edge- w, and introducing two new edges. zandz- w. If

G is a flowgraph, any flow of execution alomg w is replaced by the use wof z followed by
z-w. Herez is assumed to take no additional space or time, sahéabtal space or time taken
by any execution of G” is the same as that of theesponding execution of G.

We generalize this notion by considering several edgesw, v2-w, ...,vj - w, all leading to the
same vertexv. A multiple null node expansionG” of G is now obtained by adding a new vertex
z, as before; removing all the above edges; introducing theedgez— w as before; and then
introducing the further new edges-z v2-z, ...,vj—~z Any flow of execution along any —w

is replaced by the use f- z followed byz-.w. As before, since takes no additional space or

time, the executions of G™ are as efficient as the spmeding executions of G. As with ordinary
null node expansions, multiple null node expansions canebatét, expanding several vertices
like win the process. We now show the utility of such expassio this context.

DEFINITION 5.3. A unique loopback BGL treeis a BGL tree in which every loop has one and
only one loopback.

THEOREM 5.3. Any strongly connected graph, not having a unique loopback B&&., has an
iterated multiple null node expansion which has a unique lo&@B&d tree.

PROOF. Let T be a BGL tree for G, and suppose that T is not auermppback tree. Given any
loop L in T having the head, and having loopbacks/1 - w, v2-w, ...,vj -w, forj > 1, we form
the multiple null node expansion of G as above, in which L nasvthe single loopbaak w. By
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repeating this process for every such loop in T, we obtaiteeted multiple null node expansion
in which every loop has a single loopback. This compléeproof.

COROLLARY. For any strongly connected graph G, with a BGL tree T, theists an ordering
of the edges, either of G or of some iterated multiple madle expansion of G, with respect to
which it has the loop clustering property.

PROOF. We saw, at the end of section 5.5 above, that a uniquedokjib a loop L is always a
bottleneck. It is also an outer bottleneck; it cannot béadoad in any loop L™ inner to L, since L’
cannot contain the head of L. The corollary now follows imiedly from Theorems 5.2 and 5.3.

5.8 Loop Trees and Communication Networks

The theorems above might appear unsatisfactory, in thatsaratonnection between clustering
trees and BGL trees might have been expected. There igea tparestion, however, as to whether
loop trees, when applied to communication networks, are useéll. Loop trees arose originally
out of our analysis of call graphs, in which a self-loop cpoeds to ordinary recursion, and a
more general loop corresponds to mutual recursion. Thene weickly applied, also, to
flowgraphs; and here a loop corresponds roughly, although not dwigsasyntactically, to a
loop in the ordinary programming sense. Consider now a cancation network, in which, as
usual, we expect communication to proceed in both direchiethseen any two vertices. What is
the interpretation, in this context, of a loop in a lo@e® Fig. 5.5 indicates one of the difficulties
here. This graph G gives simple two-way communicationg line, in either direction (note
that it would be highly unlikely for a flowgraph to havestform). Suppose that the start node of
G isuq; then G has a unique loop tree consisting-df nested loops, each containing the vertices

u throughup, for somek, 1 < k < n-1. Thus loops are not necessarily obvious divisions of a
communication network.
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Fig. 5.5. Why loop trees make little sense for communidah networks

6 Wheels within Wheels

6.1 Introduction

In recent work [1] we introduce a decomposition of an eahjtstrongly connected graph G into
subgraphs. Such a decomposition has an associated trek,wehtall a loop tree, in which every
node N, other than the root, represents a strongly ctethesubgraph H of G. Our work was
motivated by the consideration of flowgraphs; if G isawfjraph and N represents H as above,
then H is either a single node, with no edges, or elsgiit a semantic sense, a loop in G.

There is also a completely different way of decomposingangly connected graph. This was
described by Luce [5] in a form which applies to some, butahosuch graphs. Luce’s work was
later rediscovered by Knuth [6], who used still anothehnéjue to provide an extension of
Luce’s decompositions to any strongly connected graph. Luesgk was motivated by
considering communication networks, and many of his cdacgp not have obvious informal
interpretations when applied to flowgraphs. However, fronurlp formal point of view, both
Luce’s decomposition and Knuth’s extension of it are/\&milar to ours.

Using Knuth's terminology, we may define a wheel, whishai strongly connected graph
decomposed into strongly connected parts, that are then desethinto others, and so on.
Extending this terminology, we defineveheel treeto represent such a decomposition. In both
wheel trees and loop trees, every node represent®rglstrconnected subgraph; if N and N
represent respective subgraphs H and H’, and if N is thatparH", then H contains H"; while if
N and N’, as above, have the same parent, then H and Hisgiat.

The purpose of this section is threefold. We start by rdesg Luce’'s work, using current
terminology for graphs. We define wheel trees and assoc@incepts, and show the similarities
and differences between wheel trees and loop trees. Weutte Luce’s work to provide a
sharpened form of Knuth’'s decomposition. Finally, we reflai® work to the further commentary
on both [5] and [6] provided by Chaty and Chein [14].

Specifically, Knuth’s theorem implies that, in our terminologyery strongly connected graph
has a wheel tree; but no information is provided as toits. In section 6.13 below, however, we
show, using one of Luce’s decomposition theorems, th&t suree may always be taken to have
a particular form, which we call a chandelier. This hapecial node X, such that every node in
the chandelier has exactly one child if and only if it g@per ancestor of X.
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6.2 Loop Trees and Wheel Trees

A brief description of our theory of loop trees was giveBéation 1 above. We now compare this
with the theorem presented in [6] according to which arongly connected graph D that has any
edges at all has a wheel decomposition. This means thatc@miposed of strongly connected
graphs O, Dy, ..., Dy, for n > 1, together with edge®s] -»y2, X2-V3, ..., Xn=1-Yn, Xn—-Y1,
where eachxj and eachyj is a node of P Suppose now that we set up a tree whose root is
associated with D, and havimgchildren, associated respectively with,Do, ..., Dn. Since the

Dj are all strongly connected, they may be decomposed fuathéra tree, which we call a wheel
tree (Definition 6.1), may be built up in this way.

Two decomposition theorems are presented in [5], of whickabend is relevant here. There are
strong conditions on the graph to be decomposed, but the camclasilso stronger, in that we
haven > 2 rather tham > 1 in the above decomposition. Formal treatments of bote’suand
Knuth’s work are given in section 6.11 below.

6.3 Basic Definitions

Any application of Luce’s work [5] must start with its nr@nology. Luce was concerned with

oriented graphs, which, in modern terminology, are mulpigsa that is, there can be more than
one edge between two given nodes. He considered a spas@ébf multigraphs, which he calls

networks, and which are, in fact, the same as (directef)hgrin the modern sense. Further
notation used by Luce is also often not what is used today.

Luce begins by defining oriented graphs, networks, subnetwaoksplete subnetworks;chains
and their products, and connected and disconnected networks. défegdons are compared
with today’s terminology in Table 1. Most important, héseLuce’s use of the term “connected,”
which means, in current terminologstrongly connected.

6.4 The Degree of a Graph

We next pass to some of Luce’s further definitions. The & that of thelegreeof a graph ([5],

p. 703). A graph has degree 0 if it is not (strongly) coratedt has degree 1 if, first, of all, it does
not have degree O (so that it is strongly connected), but iamaxige whose removal leaves a
graph which is not strongly connected.

Luce generalizes this to a graph of dedteim which you have to removeedges to get a graph
which is not strongly connected. His approach now involves twoordposition theorems for
graphs. The first of these reduces the study of all griaptiee study of graphs of degree 1, this is
done through the concept of the sum of several graphs, wdake up in section 6.8 below.
The second is a decomposition only for graphs of degree 1akeethis up in sections 6.11 and
6.14 below.

It will be necessary, in these later sections, togaresxamples of graphs of degrees 2 and 3. Fig.

6.1 shows the double ring, a graph of degree 2; if we renttmvénvo edges which lead outward
from any node, the result is no longer strongly cotewcsince there are no paths leading from
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that node. However, if we remove any single edge, thdtrssstill strongly connected. Fig. 6.2
shows the double cube, which, by similar logic, may be &eba a graph of degree 3.

6.5 Minimal and 1-Minimal Graphs

A minimal network (i. e., graph), in [5], is strongly connected ats®h1-minimal, meaning that
the removal ofany edge would result in a graph which is not strongly connecteid. definition
appears to be motivated by an analysis of communicat@wonks. Suppose that, in such a
network G, there are three nodes, A, B, and C, with edgeB,B - C, and A~ C; then G is not
minimal, in an informal sense. You can always eliminateetthge A~ C from G, and obtain a
smaller network which achieves the same effect by replagiggcommunication along AC by
the use of A.B and B~ C.
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Table 1. Comparison of Luce’s terminology with curent terminology

Luce’s terminology  Current terminology

Luce’s definition (pp. 701-702 of [5])

Network (Directed) graph
Links Edge:

Oriented graph Multigraph

(ak) ab

Initial node of(ab) a,ina-b
End node ofab) b, ina-b

Subnetwork Subgraph (not necessarily
induced)

Complete subnet Subgraph of containing all

work nodes ofN

Non-reflexive Graph with no se-loops

network

Arc Two-node or on-node cycle

(nota single edge)
g-chain fromatob  Simple path, of length, froma

“MetworkN...is a system composed of...a finite non-emptyok.nodes..and...a...subset of the
set of all ordered pairs of nodes” (p. 701)
“The members of P...are called flinks of N” (p. 701
See first 6 lines, p. 701
“...bracketed ordered pai(ab), (ca), ... [will be used] to denote links” (p01)
“If (ab)is a link, the first nodeg, will be called thanitial node..” (p. 701)
“...and the second, theend nodeof the link” (p. 701)
“A subnetwork Nof a networkN is a subse¥l” of the nodedM, of N, with P” taken to be some
subset (not necessarily proper) of those linkidl @fhich are definable o™ (p. 702)
“If M” =M, we shall say that the subnetworlcsnpleté (p. 702)

“We shall call a networ nor-reflexive if there are no links of the for(aa)’ (p. 702
“In case both.(ab) and(ba) are present in a network,...arc ak exists betweea andb, the arc

consisting of this pair of links...A link of therim (aa) is always the araa’ (p. 702)
“A...g-chainfromatobis a set ofj links of the form(acy), (c1¢2), ..., (Cq—2g-1), (Cg-1b), such

tob that no node appears more than once, except itedea = b wherea appears twice” (p. 702)
(ab, 9) a-C€1-C2-...»Cq-1-b “Any g-chain froma to b will be denoted byab, qJ (p. 702)
Product of two Concatenation of two paths “tfis a node included ingchain froma to b, then we may subdivide the chain into the
chains ‘product’ of two chains, one fromtoc, and the other froratob...” (p. 702)
Circuit Cycle “An (orientedgircuit is a chain of the forrtaa, q) (p. 702)
Connected Strongly connected “A network@nectedf there exists a chain from each node to evengrohode” (p. 702)
Disconnected Not strongly connected “A network whi not connected isconnectet(p. 702)
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Fig. 6.1. The double ring Fig. 6.2. The double be

6.6 Uniform and 1-Uniform Graphs

Luce’s motivation for defining uniform networks éhis, graphs) is to develop “a condition
implying that there is an even distribution of ceatedness throughout the network; roughly, that
the degree of any connected subnetwork is notgré@n that of the network itself” ([5], p. 703).
A uniform graph is one which is strongly connected &nhiform, meaning that every strongly
connected subgraph is of degree 1.

This is in contrast to the situation illustrated e graph of Fig. 6.3. Here we have a strongly
connected graph; however, if we delete the edga #oto B (or from B to A), the result is not
strongly connected. Therefore, this graph is ofréedl, by the definition in section 4 above.
However, if we eliminate the node A entirely, tdgatwith both of its edges, the result has degree
2, as we also saw in section 4. Thus this graptoisl-uniform, and therefore not uniform. It is
also not minimal; indeed, you can remove four ed@esE, E-D, D-C, and C-B) from the
graph, producing a strongly connected graph.

This example may be generalized. Whenever a graghr®t uniform, it has a subgraph G of
degree at least 2. At least one edge Xmay always be eliminated from G, producing arsgly
connected subgraph H'. This implies that there [tz in H from X to Y. If you eliminate
X =Y from G, the remaining graph, H, will still be strgly connected. In fact, for any nodes U
and V in H, we may replace XY by = in any path from U to V in G that involves-XY, pro-
ducing a path from U to V in H. This implies thagaph which is not uniform is not minimal; or,
more simply, a minimal graph is always uniform ([B] 704).

I. L
E D

Fig. 6.3. Removing edges to produce a minimal graph
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6.7 Descendants of a Graph

Given a graph G which is strongly connected butmutimal, you can always eliminate at least
one edge from it, and the result will still be sigty connected. Suppose now that you continue to
eliminate edges, one by one, preserving strongedivity as you go, until you reach a graph D
for which you cannot do this any more. That is, yamnot eliminate any edge from D and still
preserve strong connectivity, so that D is minirbglthe definition in section 6.5 above.

Sometimes there is more than one way to do thisekample, in the graph of Fig. 6.3, we could,
as noted in section 6 above, remove the edge€BE- D, D-C, and C-B to produce a
strongly connected subgraph. We could also, howehave removed the edges-E, C- D,
D-E, and E- B, and the result would still be strongly connectiddte that we are removing the
same number of edges in each case (four, here).

There are other cases, however, in which you camove different numbers of edges, in
producing a minimal graph. Thus, in Fig. 6.4, wa eliminate one edge from1Go produce G;

or we can eliminate two edges from & produce @. Note that both & and 3 are minimal,

they are both strongly connected, but you cannbiagatrongly connected graph by eliminating
more edges from either one.

We now consider minimal graphs obtained as aboyesliminatingas many edges as possible
These are what Luce calttescendantsof the original graph. In the first case above, ves
produce a descendant by eliminating four edgesitler of two possible ways. In the second case
above, G is a descendant ofiGwhile G is not, because it is produced from By eliminating

only one edge instead of two.

Fig. 6.4. Another example
6.8 Sums and Decompositions

Looking again at the graph of Fig. 6.1, we can the it is made up of two cycles, one going
clockwise around the ring and the other going cenahbckwise. This is a special case of what
Luce refers to as the sum of two subgraphs. Inrgéregraph G is theum of subgraphs ¢ Gp,

..., & if every node of G is contained in all of the &t every edge of G is contained in exactly
one of the G

Suppose now that the degree of G is 1, which imflat G is strongly connected. Lei Ge a

descendant of G, as in the preceding section Bere G if G is already minimal). Form a graph
G2 out of all the nodes of G, together with exacklggte nodes that were removed from G to form
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G1. Then G is the sum, in the above sense, pfa@d &. Here G is minimal (because it is a
descendant of G), while &8s not strongly connected, since otherwise (asLuoves) G would
have degree 2, not 1.

Luce’s first decomposition theorem, which we memid in section 6.4 above, generalizes this to
a graph of degrek > 1, which is expressed as the sumket subgraphs, all of which are 1-
minimal (see section 5 above). The first of theGa, is always connected (and therefore

minimal), while the last, {1, is always disconnected. The remaining Brough G¢ may be

either connected or disconnected, but their comdecomponents are minimal. As we will see in
section 6.14 below, our approach avoids this fiestomposition theorem entirely, using only the
second one, taken up in section 6.11 below.

6.9 Trees, Arcs, and Undirected Graphs

We now pass to trees, and what they mean for Uamcthe modern sense, Luce’s networks are
directed graphs, but Luce’s trees are not direteses. A directed tree, today, is a directed graph
containing no cycles, not even undirected ones) &&. 6.5. This is clearly not what Luce means
by a tree, since he states (p. 707, lines 13-1at) ‘tha network which is a tree is minimal.” A
minimal graph, however, is (strongly) connectedpliing that it has at least one cycle, so it
cannot be a directed tree in the above sense.

L] L]
L] L} L] L}
/ \ / \ . . .
L} L] L}
A general dag (containing no directed cycles, A dicted tree (not even
although it does contain an undirected cycle) anyndirected cycles)

Fig. 6.5. Directed and undirected cycles

To understand Luce’s notion of a tree, one ha®isider another of his definitions (Table 1). An
arc, for Luce, is not a single edge (as in [14], feample), but rather a pair of nodes, say U and
V, with both edges UV and V- U present in the graph. Suppose now that we hgd@ected)
graph in which every edge is part of an arc; thercan produce a corresponding undirected graph
in which each arc is replaced by a single undiceetdge. Luce calls this a graph, and says that, in
this case, a network is a graph. When [5] was enjtthe term “graph,” in general, meant what we
now call an undirected graph.

Later, [5] refers to “the concept of a tree in drapeory,” meaning, therefore, the theory of
undirected graphs. A tree, then, for Luce, is whatbtained by replacing every edad, in an
undirected tree, by the two edges b andb- a, as in Fig. 6.6. Now it makes sense that a network
which is a tree is minimal. A tree, in this serisestrongly connected, but the removal of any of it
(single) links leaves a graph which is not strongbnnected. Ifa- b is removed, there is no
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longer a path froma to b, because such a path, followedtby a, would have formed a cycle; and
a tree has no cycles.

6.10 L-Trees and Proper Descendants

We will refer to trees, in the sense of section &@ve, ad -trees (L for Luce), in order to
distinguish them from directed trees in the modsmse, such as decomposition trees. Note that a
single node with no edges is acyclic, and therefoteee, as an undirected graph. It is therefore
also an L-tree, as a directed graph. We refer¢h an L-tree as tivial L-tree.

We define, in the obvious way,pgoper descendantof G; that is, a descendant H of G such that
H # G. Luce introduces a lemma ([5], Lemma 3.1, p.)/@vhich says, restated in modern
terminology, that a proper descendant of a grapinaiabe an L-tree; this will be used in section
6.13 below. We here do not repeat the proof ofléhigna, although we note that an example has
already been introduced, in Fig. 6.4 above. Heeegitaph G is an L-tree, as illustrated in Fig.

6.7. As we noted in section 6.7 above, i&not a proper descendant of.G

AN
TRAX

Fig. 6.6. A directed tree, for Luce

VAN '
-/ \ - l/ \l
G2
Fig. 6.7. An L-tree, obtained from an undirected tee
6.11 Wheels

We now take up the study of Luce’s second decortipasiheorem. This theorem is seemingly
restrictive, as it applies only to a graph whiehd¢ontains no self-loopsb) is minimal, and) is

not an L-tree. More recently, Knuth [6], using amgetely different method, proved that any
strongly connected graph has a decomposition girdlabut more general than, that of Luce. In
section 6.13 below, we will use Luce’s decompositio order to prove a stronger version of
Knuth’'s decomposition. The following definitionseameant to be applicable to both of these
decompositions.

DEFINITION 6.1. A (Knuth) wheel W is (defined recursively as) either a single nodi no
edges (in which case it is call&dvial and itswheel treeis a single node), or a graph consisting
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of n wheels W, Wo, ..., Wh, wheren > 1, together witm edgesx1 —y2, X2-Y3, ..., Xn—=1-Yn,
Xn- Y1, Where eachj and eaclyj is a node of | for 1<i <n, in which case:

a) thesizeof W isn,
b) thethicknessof W is the minimum of and the thicknesses of all nontriviaj VI < i <

n, and
c) thewheel treeof W consists of a root node which, if W is noiwtl, has, as children,
the root nodes of the wheel trees of W2, ..., Wh.

Every node in the wheel tree of W correspondswieel somewhere in the recursively expressed
definition of W. It should be clear that a wheeltloickness 2, for example, is one for which, not
only is its size at least 2, but the sizes of dleels corresponding, in this way, to all nodedsn i
wheel tree are also at least 2, with one of theimgoequal to 2. We now need three lemmas.

LEMMA 6.1 . Every wheel is strongly connected.

PROOF. Using the notation of Definition 6.1, let W benan-trivial wheel, where by induction
we may assume that WWo, ..., Wh, are all strongly connected. Then, if X is irf @hd Y is in

Wij, there is a path from X tq (because Wis strongly connected) $9+1 (ory1 if i =n) toxj+1
(or x1, because .1, or Wy, is strongly connected), and so on, and finally t&Knuth’s theorem
now says that, conversely, every strongly connegtagh is a wheel [6].

LEMMA 6.2 . Every wheel containing a self-loop has thickriess

PROOF. Informally, we can see this because, at somet jiithe decomposition, the self-loop
must be an edge like1—y2 above; butx; = y2 here, so thah = 1 and the thickness is 1.
Formally, if W contains a self-loop, then W is nwiwal; if any of W1, Wo, ..., Wi has thickness
1, we are done. By inductive hypothesis, therenaraelf-loops in W, Wo, ..., W, so the self-
loop must be an edge likg - y2 above. In that casa,= 1 and the thickness is 1, just as before.

LEMMA 6.3 . A non-trivial L-tree has thickness 2.

PROOF. Let T be an L-tree and let S be its associatefirected tree. Clearly S has a node U of
degree 1 (otherwise it would contain a cycle);\ebe the node adjacent to U in S, so that T
contains both WV and V- U. Let T" be obtained by removing U,-LV, and V- U from T; then

T  is also an L-tree. We form T into a wheel ofesizby taking Y to be U by itself; ¥ to be T;
X1-Yy2 to be U V; andx2 - y1 to be V- U. By induction, W is either trivial, or it has thickness
2, while Wy is trivial. Since T has size 2, it therefore Haiskness 2.

6.12 Compound Circuits

The inclusion of the notion of thickness in Defioit 6.1 is intended to allow it also to apply to

another of Luce’s definitions. Aompound circuit is a wheel of thickness greater than 1. Luce
explicitly specifies that a compound circuit hassetf-loops; however, this follows anyway from

Lemma 6.2. In order to state Luce's theorem hereemsuccinctly, we introduce another

definition.
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DEFINITION 6.2 . A generalized compound circuitis either a compound circuit or a single
node with no edges. g§eneralized L-treeis the result of replacing every node in an L-togea
generalized compound circuit, and every edge betwegles in the L-tree by an edge between
nodes in the corresponding generalized compouditst

LEMMA 6.4. A generalized L-tree has thickness greater thamless it is a single node with no
edges.

PROOF. The logic here is almost identical to that fodioary L-trees. Let T be a generalized L-
tree, with underlying tree S. If S is a single natien T is either a single node with no edges, or
single compound circuit, of thickness greater tha®therwise, let U and V be as in Lemma 6.3,
and let U and V' be the generalized compound itgcassociated, in T, with U and V

respectively. There now exist edges- v andup —v1, whereu andup are in U, whilev1 and

vp are in V. Let T" be obtained by removing W1,-v2, andu2-vq from T; then T  is also a
generalized L-tree. We form T into a wheel of s2zey taking W to be U"; W to be T";x1 - y2

to beuq - v2; andx2 - y1 to beup - v1. By induction, W has thickness greater than 1, unless it is
trivial; and so does W because it is a generalized compound circuitceSii has size 2, it
therefore has thickness 2.

Luce’s second decomposition theorem now says th@ihamal graph with no self-loops, which is
not an L-tree, is a generalized L-tree. This resulleeper than Knuth’s theorem, but it is also
seemingly more restrictive. However, Luce’s theomaay be used in a proof of a generalization
of Knuth’s theorem. Note that this theorem putsrestriction on the form of the wheel tree,
whereas ours will put a strong restriction ontjradicated by the following definition.

DEFINITION 6.3 . A chandelier is a rooted tree T containing a node X such thgtreode in T
has exactly one child if and only if it is a propgncestor of X. All proper ancestors of X
constitute thaipper part of T, the remainder of T (including X) being itaver part.

Fig. 6.8 shows a chandelier and the visual justifn of its name. Note that X and every node
below it has either no children, or at least twddrkn, whereas every node above X has exactly
one child. Mathematically, a chandelier could censf just a lower part, or of just X and an
upper part, or even of X by itself. The thicknesshe lower part of a chandelier is always greater
than 1, unless the lower part consists of X byfitse

6.13 A Generalization of Knuth’s Theorem

We are now ready for our main result on wheel trees
THEOREM 6.1. Any strongly connected graph G is a wheel whoeektree is a chandelier.

PROOF. First we ask whether G has a self-loop. If so,express G as a wheel with size 1, in
which x1 =y1, and W1 is G with the self-loop removed. We dend(l1, here, by G1, and
continue removing all self-loops in this fashiomgucing G2, G3, etc., until we arrive at a graph
H = G with no self-loops. Every node in the wheel tré&ofrom G down to H, has exactly one
child, except for H.
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Fig. 6.8. A chandelier

At this point we ask if H is an L-tree. Supposesijtthen we apply Lemma 6.3, which shows that
the wheel tree of H has thickness 2. Let X be tim of this wheel tree; then the wheel tree of G,
with this X, satisfies the requirements of Definiiti6.3, and we are done in this case.

Now suppose that H is not an L-tree. If so, théit,is minimal, we set K = H and proceed to the
next paragraph. If H is not minimal, then let Kdbeescendant of H; note that, by Luce’s lemma
of section 6.10 above, K is not an L-tree, sinds & proper descendant of H. [zt zp, ...,z be

the edges which are removed from H to produce Kereleactz; is aj - bj for 1<i <k. Let H be

H with z1, 29, ...,z removed, for &< i <k, so that k4 = H and H = K. For 1<i <k, then, H is
Hj—1 with 7 (= aj - bj) removed; and we may expresg_llas a wheel of size 1, in which = g,

y1 = bj, and W is H; (that is, H—1 with z removed). Every node in the wheel tree of G, fGm
down to K, has exactly one child, except for K.

At this point K is a minimal graph, not an L-tremd containing no self-loops, so that Luce’s
second decomposition theorem applies. Accordin§lys a generalized L-tree, and, by Lemma
6.4, it has thickness greater than 1, unlessatssgle node with no edges. Let X be the root of
the wheel tree of K; then the wheel tree of G, wiitls X, satisfies the requirements of Definition

6.3, as before, and we are done.

6.14 Chandeliers and Luce’s Two Decompositions

Luce presents two decompositions of graphs; bubifém 6.1 uses only the second of these
theorems. We will now explain why. Luce’s first degposition is a way of reducing the study of
graphs to the study of minimal graphs; any grapkckwis not minimal, and which might, indeed,
have high degree, may be expressed as the sumglesigraphs.
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The double cube of Fig. 6.2 is a good example ©f.tH we were to apply Luce’s first
decomposition theorem to this, we would find thiagh G decomposed intoj&nd &, where

G1 is further decomposed intojkand H. Here G, G, and H are shown in Fig. 6.9. We omit the

rest of the details, except to note that therede@mposition tree for G, constructible in thisywa
However, this tree is not like our other decompasitrees becausexan internal node in the

tree, is not strongly connected, although it hakl@n in the tree which do correspond to strongly
connected subgraphs.

In constructing a chandelier for the double cuben@yever, a much simpler decomposition is
used. The special node X, as in Definition 6.3, mawy be taken to represent the graph &b in

Fig. 6.9. Note that G has 24 edges, whilg ks only eight. Each of the 16 remaining edges, in

turn, is taken as the single edge in a wheel & $jzesulting in sixteen nodes at the upper dart o
the chandelier. The decomposition of 14 then into a wheel of size 8, and each chiltlpin the

chandelier is a single node. All this is illustihia Fig. 6.10.

. 1.2
A ARy
A A A
Ly ALy KL
] 8 8

Fig. 6.9. Constructing a chandelier for the doubleube

Gy=G G, G, Gs G, G, Gg

- - - - - = - -
GIS GIZ G11 GIl] Gﬂ GB GT :
- -} - -~ - -} - - - - - -l -

Giq Gis H,
. — o —

2

1 2 a &5 6 7 8
G1=G~{1-4} G =G4~ {5-1} & =GCg~{1-5} G13=G12~ {5-6}
G2=06G1~{2-1} G =G5~ {6-2} Go0=Go ~{2-3} Glq4=G13~{6-7}
G3=G2~{3-2} Gr=Ge ~{7-6} G1=6G10~-{3-7} G15=G14~{7-8}
Gg=G3~{4-3} @ =G7~{8-4} G2=6G11~{4-8 H1=G15~{8-5}

Fig. 6.10. The constructed chandelier
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6.15 K-Rooted Trees and Related Concepts

For wheels with thickness greater than 1, our wheels have been studied by Chaty and Chein
[14], which calls thenK-rooted trees (K for Knuth). Using the terminology of this paper

e areducible graph is a wheel with size greater than 1,
e aK-decomposition of a reducible graph is the specification of VW2, ..., Wh and thex;
and theyj in the wheel;

< atotally reducible graph is a wheel with thickness greater than 1;

« aK-rooted tree is what we are calling a wheel tree (but onlytfdally reducible graphs);

« thedepth of a K-rooted tree is the maximum height of a whese (when there is more
than one wheel tree) for a totally reducible graph;

e anoptimum K-rooted tree is a wheel tree with maximum height;

e theorder of a compound circuit is the number of nodessmiheel tree;

e acircuitic (or circuitus) extension of a node is the result of replacirgribde by a circuit
(that is, a cycle) and edges to the node by edgssrhewhere in the circuit.

Chaty and Chein now proceed to defineomtractible elementary cycleC as one from which
there is exactly one edge proceeding outward, amnehich there is exactly one edge proceeding
inward. Formally, the definition in [14] involvelé quotient graph in which C is contracted to a
point. (If the cycle is not contractible, there Mk parallel edges in the quotient graph.) Chaty
and Chein now define a sequence of graphs, eachobtzned from the previous one by a
circuitus extension, and show (using our notatitvgt a wheel has a wheel tree of thickness
greater than 1 if and only if it can be derivednfra single point using a sequence of circuitus
extensions as above.

6.16 Generalizations to Graphs of Higher Degree

The notions of 1-minimal graphs, 1-uniform grapdusd descendants of a non-minimal graph are
generalized by Luce [5] to graphs of degree gretiten 1. In such a case, Luce speak-of
minimal graphsk-uniform graphs, an-descendants of a graph.

A k-uniform graph is one in which every strongly connected sajiiy has degree not greater than
k. A graph of degrek which is notk-uniform can easily be produced by starting witmearaph
of degreek and attaching to it a graph of degree higher than

A k-minimal graph is one in which removal of any edge resnl& subgraph of degrée-1. For
example, a double ring, like that of Fig. 6.1 (Iwatving any number of nodes), is 2-minimal.
Removal of any edge UV leaves a graph of degree 1, it is strongly cotegdut removing the
remaining edge that starts at U leaves a discoadeagriaph (with no paths starting at U). In the
same way, the double cube of Fig. 6.2 is 3-minirkldre removal of any edge -V leaves a
graph of degree 2, since removing the remainingadges that start at U leaves a disconnected
graph as before.

Fork> 2, Luce proves that evekyminimal graph ik-uniform, and of degrek This generalizes

the fact that a minimal graph is uniform and of regl, although the precise statement of Luce’s
lemma is not always true fédr= 1. The problem is that a 1-minimal graph doeshave to be
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strongly connected, and indeed any graph whiclvistiongly connected is 1-minimal, although
possibly of degree 0, not 1.

The removal of edges from a graph G of degree o8 generalized in [5] to the removal of
edges from a graph of degrkeproducing a graph which gminimal for someq < k. This is
called ag-descendant of G; and Luce states (without progidaounterexamples) thai-
descendants do not always existdor 1, although they do always exist fpe 1.

6.17 Decompositions of Graphs of Higher Degree

In [5], Luce also generalizes his first decomposittheorem to graphs of degree higher than 1.
Let us consider a graph G of degree 2, since thae anay be easily visualized. Here the
decomposition is into three graphs;,@&p, and &, each of which contains all the nodes of G.

The graph G is minimal, and therefore strongly connecteg;i&1-minimal, but not necessarily

strongly connected, and therefore not necessaiitynmal. (In the generalization to degrkeit is
still only G1 that must be strongly connected.) Alsg ust be not strongly connected, and is

therefore always 1-minimal. However, any stronglynmmected subgraph of 2Gis minimal.
Finally, G1 is a descendant of the sum of énd &, which is in turn a 2-descendant of G.

To illustrate this, consider the graph G of Fid.16.which has degree 2; if we remove.B and
B - C, the result is not strongly connected, becausestare no longer paths to anywhere from B.
Here G is the sum of {3 Gp, and G, as in Fig. 6.12. Note thatg5here, is not strongly

connected, because of the isolated nodes B and Ién, &, here, happens to be strongly
connected, so that botm@nd G, here, are minimal (and, in fact, interchangeable)

For a general graph of degrke> 2, the decomposition is always into the sunkif subgraphs,
all of which are 1-minimal. The first of thesej,ds always connected (and therefore minimal),
while the last, @+1, is always disconnected. The remaining Brough G may be either

connected or disconnected, but their connected ooenis are minimal. Each sum€..+G is
always g-descendant (as at the end of section 6.16 abdweg sum G+...+G+1.

G

Al IE

A

Fig. 6.11. Decompositions of graphs of higher degge
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A-—FrlB A--‘—-B 'A'I' -E
G, G, \
G,
D* 44— D*—® D* *C

Fig. 6.12. The decomposed graph
6.18 Decomposition Trees and Isolated Paths

We now ask whether a graph, having been decompasetbove, may be decomposed further,
producing a tree bearing certain similarities ttoap tree. This question is taken up in [5] as
follows: “...the study of an arbitrary network hlasen reduced to the study of a collection of 1-
minimal networks. These...are either connected, andminimal, or disconnected. But a

disconnected network consists of isolated nodedatsd chains, and connected pieces...the
connected pieces are minimal. If the theorem idieghpepeatedly to the connected pieces...it
may, in the same sense, be reduced to isolated nisdéated chains, and minimal subnetworks.”

Luce’s use of the term “isolated chains” (meanimg,modern terminology, isolated paths) is
different from what is used today. An isolated n@&lene which is separated completely from all
other nodes; in other words, there are no edges foom an isolated node. Two paths today,
therefore, would be considered isolated if they eveeparated completely from each other,
meaning, in this case, that they had no nodesnmuan. However, a disconnected network (that
is, a graph which is not strongly connected) does mecessarily consist of isolated nodes,
connected pieces, and (in the above sense) isathtds, as may be seen from the graph of Fig.
6.13. Here the connected pieces are (induced h2,{3} and {6, 7, 8}; but the remainder of the
graph is (induced by) {2, 3, 4, 5, 6}, and thisi® made up of paths having no node in common.
Isolated chains, for Luce, then, are chains haviodinks (i. e., edges) in common, such as
2-4,5.,6 and 3»4 here.

6.19 A Decomposition Tree Example

We now give an example of a decomposition treetlierdouble cube G of Fig. 6.2. This is 3-
minimal, and therefore 3-uniform and of degrees3wa saw in section 6.16 above. Here G has 24
edges, of which we remove eight, producing a dothlg on eight nodes, which we calhGand

we denote the remaining edges by @ll this is shown in Fig. 6.14.

We now use Luce’s Lemma 2.1 (p. 703 of [5]) whiglysthat a graph of degr&e havingm
nodes, must have at ledsh edges. Heré is 2 andm is 8, so any graph of degree 2 on these
nodes must have at least 16 edges. We use thiow that G is a 2-descendant of G. On one
hand, we have eliminated eight edges from G toywredhe double ring G which is 2-minimal
(and therefore 2-uniform and of degree 2, as weisasection 6.16 above). On the other hand, if
we had eliminated more than eight edges, the reguiraph would have fewer than 16 edges and
therefore, as we saw above, could not have degréei2shows that 8 is the maximum number of
edges we can remove, and still leave a graph okdedy
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SN
N N\,

Fig. 6.13. Decompositions of disconnected networks

G: 3 G 2 3 G,:2__?
"/’%:/:/T AL . T
Tléo“ jl:‘.? Eo“ 4.? Tlﬁo jl:‘.?
LA
5 -—3 5 a—3 5* 8

Fig. 6.14. Decomposition of a 3-minimal graph

The graph G is not strongly connected, but it is made up of fetrongly connected pieces, which
we denote by K, Ko, K3, and Kg, as in Fig. 6.15. We now obtain a 1-descendatitefraph @,
which is a single ring that we denote by.Hhe eight edges which we remove from 1@ get H
will be referred to as §| as in Fig. 6.16. By an argument similar to the above, we show that
H1 is a 1-descendant ofiGhere. By eliminating eight edges from ,Gve obtain H, which is 1-
minimal; eliminating any edge fromjHroduces a graph which is not strongly conneddedthe
other hand, if we were to eliminate more than egglges from @, we would obtain a graph with
fewer than eight edges, but still having eight repd® that it could not be strongly connected.

The decomposition tree for G is therefore thatigf B.17. The main difference between this tree
and a loop tree is concerned with,@vhich, as we saw above, is not strongly connedted loop

tree, every node, other than the root, represeritso, which must be a strongly connected
subgraph.

K, K, K, K,
1 2 3

-
o .
8

Fig. 6.15. Decomposition of a 3-minimal graph (coimued)
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G, 2 3 H,:> H, >

2

3 3
/; L] L]
1-‘__/ ."-/:l 1if+—-4T 1iﬁh1/4‘l
T
l:/- .7 ;- .7 ;- /i i
5-—";4‘/ 5-—b§/‘ 51‘1—5
Fig. 6.16. Decomposition of a 3-minimal graph (futter continued)
/ -
Gl / GE \
H, H, K, K, Ky K,

Fig. 6.17. Decomposition of a 3-minimal graph (coheded)
6.20 L-Trees and Proper Descendants

We define, in the obvious way,poper descendantof G; that is, a descendant H of G such that
H # G. The following was stated, but not proved, in section 6.19 above. It was proved in [5]; we
prove it again here, using modern terminology.

LEMMA (Lemma 3.1, p. 707 of [5]). A proper descendantadétrongly connected graph G
cannot be an L-tree

PROOF. Suppose that H is an L-tree which is a propeceiedant of G, obtained by removing
edgesey, ...,ek from G, in that order. Let H" be H with the addital edgesx = UV, so that H’

is not minimal. We show that H is a proper descahdd H', as well as of G. Suppose the
contrary; since H is minimal, there must be anotharimal graph H", obtained by removing at
least two edges from H". Then H" would be obtaifrech G by removingy, ...,ex—1 (to produce
H’), followed by at least two more edges; thatisleastk+1 edges in all. This would contradict
our assumption that H is a proper descendant ab@ined by removing as many edges of G as
possible, with what remains still being stronglynected.

We obtain a contradiction by showing that such dneiists after all. Since H is strongly

connected, there is a pathin H from V to U. We first show that the length ofis at least 2.
Otherwise, it would have length 1, so it would b&rsgle edge . U. However, since H is an L-
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tree and it contains M U, it also contains U V. That would contradict the assumption that M
is a new edge, added to H to produce H'.

We now obtain H" by removing from H’". Sincer has length at least 2, we are removing at least
two edges from H’, as noted above. It remains tovshat H" is strongly connected. Let X and Y
be in H"; we need to construct a path in H" frontaXY. Since H’ is strongly connected, and also
contains X and Y, there is a pathin H" from X to Y. If this path does not invohany edge irr,

we are done.

Now letn be V| -V2-...- V|, where \f =V and \ = U, and suppose that involves some
edge V- Vj+1, where 1< i <k. Since H is an L-tree, every edge in H is panvbat Luce calls
an arc (see section 6.9); therefore H also contampath % - Vk_1-...» V1. We now replace
Vj-Vj+1inn by the path Y- Vj-1-...-V1-Vk-VK=1-...- Vj+1, which is in H" (note that
V1-Vkisin H", since \{ =V and \f = U). This completes the proof.

6.21 The Degree of a Flowgraph

In this and the next three sections, we take upaiestion of whether Luce’s work in [5]
motivated by a study of communication networks, hasch relevance to flowgraphs, which
motivated our work described in [1]. The answeresgpp to be no, but the details may be of some
mathematical interest.

Luce states in [5] that his first decompositiondieen reduces the study of all graphs to that of
graphs of degree 1. However, for flowgraphs thisildanot appear to be of great importance,
because almost all flowgraphs have degree eitloerlGanyway. In fact, we have the following:
Any flowgraph containing an assignment statemeat degree either 0 or 1.

To prove this, first assume that the flowgraph @asof degree 0, so that it is strongly connected.
Consider an assignment statement S in G, and ket the next statement after S; note that T is
always executed immediately following S. Now remdke link in G from S to T, producing a
graph G’. There are no paths in G” from S to ahgrohode, because all such paths would have to
go through the link that was just removed. HencdsGiot strongly connected, and G is thus of
degree 1.

It is possible, although of doubtful utility, to mstruct a flowgraph of degree 2. For example, we
could do this for the double ring of Fig. 6.1; gvetatement is now an if-statement, passing
control by one position either one or the other \wwegund the ring, depending on the result of a
condition. One could include assignment statemasitside effects of the if-statements, in order to
do useful work.

Mathematically, we could even construct a flowgraplany degree higher than 2, by usincpae

or switch statement at every node. For degree 3, each sauau one vertex of a cube, which has
three adjoining vertices, to any of which contra@ypass depending on which case is applicable,
as in the double cube of Fig. 6.2. For degree 3, each node is one vertex of a hypercube in
dimensional space, havimgadjoining vertices.
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6.22 Minimal Flowgraphs

In section 6.21 above we mentioned that a flowgragght not be minimal for a good reason.

Having said this, it is conceivably still of intsteto determine which flowgraphs G are minimal
and which are not. The answer appears a bit straavga for flowgraphs of structured programs
without the go-to. Let us assume that G is strooglynected, and that we build up G by replacing
parts of it by more complex parts. If G is minimahd we replace L1: S; L2: within it by some

other construction Z, then the resglminimal in each of the cases (1) through (6) below

1) If Zis L1: S1; L3: S2; L2:. Here we had an old edfy1- L2, which does not remain;
and there are now two new edges, namely.LB and L3- L2, and the removal of
either of these leaves the graph not strongly cctede

2) If Zis anif-statement wittelse of the form L1:if Cthen L3: Slelsel4: S2; L2:, where
S1 and S2 are single nodes. There are four newsedgamely LL. L3, L3-L2,
L1-L4, and L4-L2, and the removal of any of these leaves the hgraqt strongly
connected.

3) If Zis L1: while (C) {L3: S1;} L2:, where S1 is a single node. Wadhan old edge,
L1 - L2, which remains, and there are now two new edgasely L1- L3 and L3- L1;
and the removal of any of these leaves the grapbktrangly connected.

4) If Z is awhile (true) construction containing a single break. Removhegbreak leaves
the graph not strongly connected, since there iwaypto get to the statement following
thewhile loop.

5) IfZis L1:for (C1; C2; C3) {S1;} L2:, where S1 is a single nodlkis is equivalent to an
assignment followed by a while statement, and r(gsnd (3) above apply.

6) If Z is acaseor switch statement in which every case is non-null, inclgdihe default
case. Removing the link from the start of the stetiet to any case, or from any case to
the end of Z, leaves the graph not strongly coratect

However, the result isot minimal in each of the cases (7) through (12) Wwelo

7) If Zis anif-statement withoug¢lse of the form L1:if Cthen L3: S1; L2:, even if S1is
not a single node. We had an old edge.~LP, which remains; and there are two new
edges, namely L1 L3 and L3-L2. The removal of L1 L2 now leaves a graph which
is strongly connected.

8) If Zis L1: do S; L3:while (C); L2:, even if S is not a single node. We hadll edge,
L1- L2, which does not remain, and there are now tieag edges, namely L1L3,
L3-L1, and L3-L2; and the removal of L3 L1 leaves a graph which is still strongly
connected.

9) If Zis awhile (true) construction containing more than dmmeak. Removing anyreak
now leaves the graph strongly connected, since ave always get to the statement
following thewhile loop by means of anothbreak.

10) If Z is a while (C) construction containingpreak, one or more times, where C is
anything other thatrue. Removing anyreak now leaves the graph strongly connected,
since we can still get to the statement followihgwhile loop through the normathile
logic when C idalse

11) If Z is a conditionalcontinue. Removing the edge which does the continue lethwes
graph strongly connected.

12) If Z is a caseor switch statement in which some case is null, and is sgpited by an
edge from the start of theaseto the statement following Z. Removal of that lielaves
the graph strongly connected.
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6.23 Null Node Expansions and Minimal Graphs

In considering whether a flowgraph G may be replaog a flowgraph H which is equivalent to

G, there is always the question of what equivalaneans. Clearly H might provide exactly the
same computations that G does, and, at the sanee Hnmight be less efficient than G, with

respect to time and/or space requirements. Itasefbre useful to define a class of equivalent
graphs which do not present this problem.

Null node expansions were introduced in sectiongh@ve. There are many possible reasons to
introduce null nodes. Here we will merely be coneer with one of these, related to [&]non-
minimal graph always has a null node expansion thgminimal Suppose we have an edge,
LO- L1, the removal of which leaves the graph stilbsgly connected. We can always replace
LO- L1 by two edges, LO. L2 and L2- L1, where L2 is a null node, as in section 5.7. Béng
either of these edges leaves the graph not strawipected; and if we do this for every such
edge, we will have a minimal graph. (In example) (@2 the preceding section, this would be
minimal if the null case had its own node.).

6.24 Wheel Trees and Loop Trees

An individual loop, within a loop tree, may be derd from a general acyclic graph with
loopbacks, by replacing some of its elements bgridoops. An individual wheel, within a wheel
tree, may be derived from a simple cycle by replagdome of its elements by inner wheels. This
greater simplicity of wheel trees, however, comea &ost; the height of a wheel tree is often
greater than the height of the corresponding loep. We will now illustrate this with an example.
Consider the following program:

(A sO;
(B) do {

switch (expr) {
(C1) case 1: while (condl) s1; break;
(C2) case 2: while (cond2) s2; break;
(Ck) case k: while (condk) sk;

}
(E) } while (cond)
(F) f,

The flowgraph of this program is given in Fig. 6.X8onsider the outer loop here, that is, the
entire graph except for the nodes A and F. A laee ffor that graph consists of tde loop,
containingk while loops, all at the same level. The height of tbigpl tree, therefore, is 2. We
now prove that any wheel tree for this graph haghteat leask+1. If k = 1, the wheel tree also
has height 2 (k+1); B, C1, and E form the outer wheel, whilg @nd Dj form the inner wheel.

If k> 1, then let W be a representation of this grapla wheel, as in section 6.11, containing

inner wheels W, Wo, ..., Wh. Let W1 be the inner wheel that containg.OChere are four cases,
only three of which are actually possible:
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1) W consists of R by itself. In that case, as we can see from Fit8,61 - y2 must be
Dk - Ck, while xn- y1 must be - Dk. Thereforeyo2 = xp and san = 2, with W) being
the remainder of the graph. Otherwisej Wiust contain { since (g is the only node
with an edge either to or fromD

2) W1 consists of R and (x by themselves. In that case, again from Fig. 618,y2 must
be G«- E, while xh—y1 must be B-Ck. Let Wo be the inner wheel that contains E.
Since W is strongly connected, it also contains B; but Bny=so that agaim = 2 and
W3 is the remainder of the graph. In either of thesses, W is strongly connected; also,
any wheel tree of Wmust have height at least()+1 =n, by induction, so any wheel
tree for W must have height at leastl.

In the remaining two cases,\ontains [}, Cx, and either B or E, since these are the only nodes
with edges to or from i If W1 contains E, then, since s strongly connected, it also contains
B; so, in any case, Y\contains B.

3) Wi contains all Pexcept for some Pwherej # k. Here W contains [, and W does
not contain B, so that Wmust be either Pby itself, or j and G by themselves. This
then reduces to case (1) or (2) above, yvittking the place df.

o A

Y

e B

D, Y. ¥

Te

Y

F

Fig. 6.18. The height of a wheel tree compared tbat of a loop tree

4) There exist two P say [y and 0Oy, which are not contained in Wbut W_still contains
Dk, Ck, and B. We now show that this case is impossiBlearly D; and Oy cannot be

in the same inner wheel, since that wheel wouldehtavcontain B; but B is actually in
W1. Therefore, [ and O are contained in distinct inner wheels, and timeust now be

a path around W, from Pto Dy (or from Dy to Dg), which does not go through MWV

Since W contains B, this path cannot go through B. Thignipossible, however,
because every path fromgbo Dy, or from O to Dg, in this graph must in fact go
through B. This completes the proof.
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A consequence of this is that wheel trees do naieneral, represent the looping depth of a graph,
even though, like loop trees, they constitute aodgmsition of strongly connected graphs into a
tree structure, with a strongly connected subgedpvery level.

7 Conclusions

We have compared three methods of repeated decdioposf a directed graph, using strong
components, namely wheel trees, clustering trees |@op trees. We have shown that loop trees
are a better source of understanding of the prigsedf flowgraphs than are clustering trees or
wheel trees. We have also shown that there arekweln concepts in the theory of directed
graphs that can be better understood by considetieg loop trees. These include path
expressions, edge-disjoint spanning trees, andéakdvertices. Our contention is that loop trees
are the first important 21st-century developmenthe theory of directed graphs, particularly
flowgraphs, and that anyone interested in thispebould learn about them.
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