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Abstract 
 
Aims: In a previous paper we have obtained a result which provides a new way to consider 
structured programs. Any directed graph whatsoever, according to this result, is a dag overlaid 
by a structured graph, with loops within loops in which no loops overlap. In such a structured 
graph, the only backward edges go from somewhere in a loop to the head of that loop. Crucial to 
this result is the construction of what we call a loop tree. As suggested by R. E. Tarjan, we here 
apply this result to three well-known situations. We also compare our decomposition method to 
two earlier such methods, one by Tarjan and one, much older, by Luce. 
Methodology: We use the conventions of classical mathematics, in which sets and functions 
underlie all structures, such as directed graphs and loop trees, and in which all facts obtained in 
the course of the work are presented as theorems and lemmas, based on definitions and 
accompanied by valid proofs.  
Results: We give a method of solving the single-source path expression problem for a reducible 
graph by examining its loop tree, which must be unique. We give a necessary and sufficient loop 
tree condition for a graph to have two edge-disjoint spanning trees, and a necessary and 
sufficient loop tree condition for a graph to have a feedback vertex. 
Conclusion: The study of loop trees can be used to clarify many situations in the theory of 
directed graphs, in addition to the complete classification of directed graphs mentioned above. 

Keywords: Loop trees, path expressions, edge-disjoint spanning trees, feedback vertices, strongly 
connected components, wheels within wheels. 

 

1 Introduction 
 
This paper is concerned with several applications of the concept of a loop tree, introduced by the 
author in [1]. In order to make this presentation self-contained, we review basic loop tree notation 
here. In this paper, by a graph we shall always mean a directed graph. When an algebraic language 
program P is compiled, producing object code with a flowgraph G, loops in P do not necessarily 
correspond to strongly connected subsets of G. Nevertheless, we argue that, from a semantic 
standpoint, an outer loop L of G is a strong component of it which is non-trivial. (A strong 
component of a graph is called trivial if it has just one vertex and no edges.) 
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An outer loop L of a graph G is a non-trivial strong component of it. An entry point of L is a 
vertex y ∈ L such that there is an edge in G to y from some x ∉ L. A head of L, in a rooted graph 
G, is either an entry point or the root of G. Here L always contains a head, of one of these two 
kinds, which are mutually exclusive; it might contain more than one entry point. Given an outer 
loop L with a choice of head h, a loopback of L is an edge leading to h from somewhere in L, and 
the body B of L is the result of removing all loopbacks from L. The non-trivial strong components 
of B are then outer loops of B, and, by definition, first-level inner loops of G. These may contain 
further loops, and so on, all of these being higher-level inner loops of G. 
 
A loop tree of G is a tree T whose root is G; in which every outer loop of G is a child of G; and in 
which every outer loop of the body B of any vertex L ≠ G in T is a child of L. If G itself is 
strongly connected, it has one child in T, namely G itself. In all other cases, the children of a node 
U in T are the non-trivial strong components of the body of U, with respect to some head of U. 
The fundamental theorem of loop trees [1] states that every graph G whatsoever has at least one 
loop tree, having several further properties which we use below. There is a linear ordering of the 
nodes of G as P1, ..., Pn, in such a way that, for every edge E = (Pi → Pj) in G, either i < j or else E 
is a loopback, as defined above. With respect to this ordering, every loop in G is induced by a 
contiguous subset {Pu, Pu+1, ..., Pv} of the nodes, with head Pu, where u ≤ v. Two loops cannot 
have the same head, and loops are properly nested, so that, for any two loops, either they are 
disjoint or one is contained in the other. Since a loop might contain more than one entry point, G 
might have more than one loop tree. However, it is stated in [1], and proved in [2], that G has a 
unique loop tree if and only if it is reducible, in the sense of Allen and Cocke. The fundamental 
theorem of loop trees is here applied in the following five ways. 
 
1.1 Path Expressions 
 
All paths from the start node s of a graph G to an arbitrary node v in G form the language σ(P(s, 
v)) generated by a specific regular expression P(s, v). Such a regular expression is useful in 
carrying out global flow analysis and in solving shortest path problems and sparse systems of 
linear equations. In section 2 below, we present a relation between loop trees and such path 
expressions. Specifically, given a loop tree of a reducible graph, we show how to generate all P(s, 
v) for fixed s and all v. We also briefly discuss an extension of this technique to non-reducible 
graphs. 
 
1.2 Edge-Disjoint Spanning Trees 
 
A spanning tree of a graph G is a subgraph of G which is a directed tree, and which contains all 
vertices of G. Two spanning trees of G are edge-disjoint if they have no edges in common. It is 
known that two edge-disjoint spanning trees of a rooted graph G, both having the same root r, 
exist if and only if G has no bridges, where a bridge is an edge v-w which is included in every 
path from r to w. In section 3 below, we derive a necessary and sufficient condition for a graph G 
with a loop tree T to have two such trees, namely that every vertex in G other than r, and every 
loop in T not containing r, has at least two entry edges. We also show that a graph with a unique 
loop tree, and having at least two vertices, must have a bridge, and thus cannot have two edge-
disjoint spanning trees rooted at r. 
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1.3 Feedback Vertices 
 
A feedback vertex of a strongly connected graph is a vertex contained in every cycle in the graph. 
Of course, not every graph has such a vertex. A feedback set is a set of vertices in a strongly 
connected graph, such that every cycle in the graph must contain at least one vertex in the set. 
Feedback vertices and feedback sets have been studied extensively by Smith and Walford [3] and 
by Garey and Tarjan [4]. In section 4 below, we obtain a necessary and sufficient loop-tree 
condition for G to have a feedback vertex. The condition is that G have a loop tree T with respect 
to which G has no parallel loops and no conditional loops, in a sense which we define; and that the 
innermost loop L of G, which must be unique to T, contains a vertex which covers every other 
vertex in L. This will then also be true of every other loop tree of G. We also obtain bounds on the 
size of a minimal feedback set in a graph. 
 
1.4 Clustering Trees 
 
For any strongly connected graph G, we here compare our construction of loop trees with a 
decomposition tree construction due to Tarjan, to which we refer as a clustering tree. Both of these 
are tree decompositions in which the root represents G; in which every vertex in the tree 
represents a strongly connected subgraph of G; and in which, if N1 is the parent of N2 in the tree, 
then G1 contains G2, where N1 represents G1 and N2 represents G2. In section 5 below, we derive a 
necessary and sufficient condition for a generalization of loop trees to be identical to clustering 
trees in all cases, and another such condition for these to be identical in at least one case. We then 
show that every graph has a cost-free extension for which the two types of tree are identical in at 
least one case. 
 
1.5 Wheels within Wheels 
 
Any strongly connected graph may be decomposed, in at least two ways, into smaller such graphs, 
which may in turn be decomposed into others, and so on. We have developed one such 
decomposition; another earlier one was discovered by Luce [5] and later rediscovered by Knuth 
[6]. In section 6 below, we compare our result with that of Luce, and explicate its advantages over 
Luce´s decomposition. We use Luce’s work to provide a further sharpening of Knuth’s 
decomposition theorem, involving a special kind of graph which we call a chandelier. To make the 
presentation clearer, we recast Luce’s work, using current graph terminology; we also relate this 
work to further commentary by Chaty and Chein. 
 
1.6 Recent Research 
 
The reader will doubtless note the lack, in this paper, of the usual survey of recent research in the 
given field. There is a good reason for this. Loop trees were only discovered in 2004, and the 
fundamental theorem of loop trees was only published, outside of internal technical reports, in 
2007. Moreover, loop trees were discovered by accident, in the process of working on improved 
compiled code for nested recursive procedures. It should make sense, then, that no one has been 
working on applications of loop trees, other than this author, although we hope that this swiftly 
changes. 
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2 Loop Trees and Path Expressions 
 
In this section, by a path, we do not necessarily mean a simple path, except as specified explicitly. 
Indeed, most of the paths which we consider here may be thought of as resembling execution 
paths through a flowgraph, each of which may clearly go around a loop more than once, and 
similarly for several loops. Such execution paths, however, are typically thought of as sequences 
of statements, which are vertices in the flowgraph; by contrast, paths here, as always in a graph, 
are sequences of edges, rather than vertices. We are interested mainly in paths of execution which 
start at one specific node of a graph, called its root or start node. We do not specify a single exit 
node; rather, we are concerned with all paths from the start node s to any other node v. 
 
2.1 Introduction to Regular Expressions 
 
Regular expressions here are those built up from variables representing the edges of a graph, using 
parentheses and the operations ∪, ·, and *, with Λ denoting the null string. They are unrelated to 
the more general regular expressions found in a programming language such as Perl. It has been 
known for some time (see, e. g., [7]) that the set of all paths from s to v is representable as σ(P(s, 
v)), where P(s, v) is some regular expression and σ(e), in general, is the language generated by the 
regular expression e. We are concerned here with generating the various P(s, v) for an arbitrary 
graph, and not merely one which is reducible in the sense of Allen and Cocke. Such regular 
expressions are useful in carrying out global flow analysis and in solving shortest path problems 
and sparse systems of linear equations. 
 
2.2 Introduction to Loop Trees 
 
Basic loop tree notation was introduced in section 1 above. We will also make use of a specific 
representation for a loop tree, as described in section 9.1 of [1]. For the purposes of implementing 
this representation in programming languages of the C family, we now refer to the nodes as P0, ..., 
Pn–1, rather than as P1, ..., Pn. If G has n nodes, then the representation involves two arrays, called 
order and loops. The order array gives the new ordering of the graph, with order[k] = z where Pk, 
as above, is the node whose given index is z. The loops array specifies where the loops are. If Pk is 
the head of a loop containing m nodes, then loops[k] = k+m; if Pk is not the head of any loop, then 
loops[k] = k. 
 
2.3 Generating Path Expressions from a Loop Tree 
 
The problem of finding all of the P(s, v) for fixed s and arbitrary v is known as the single-source 
path expression problem. This is by analogy with the single-source shortest path problem, where 
again s is fixed and v is arbitrary. We here present a way to solve this problem for a reducible 
graph G, given its (unique) loop tree as represented above, where s is the start node of G. This will 
be done by a single pass through the nodes of G, given by P0, ..., Pn–1 as above, where s = P0. In 
order to distinguish path expressions in different graphs, and also to avoid two conflicting uses of 
P, we replace the notation P(s, v) of [7] by πG(s, v), indicating that this expression defines all paths 
in G, whereas πK(s, v), for a subgraph K of G, defines all those paths which stay within K. 
 
We make use of five rules, denoted by (R1) through (R5) below. We use a stage counter k, 
initialized to zero, and a recursive program C(Y, h), where Y is either the entire graph G or the 
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body B of some loop L in G, having head node with index h. Because of our loop tree 
representation, L will be of the form {Pu, Pu+1, ..., Pv}, for some u < v, where Pu is the head of L; 
and B, since it is the body of L, contains the same nodes that L does. Here C(B, u) assumes that k 
is initialized to u; it calculates πB(Pu, Pw) for all w, u ≤ w ≤ v, and leaves k set to v+1. Similarly, 
C(G, 0) assumes that k is initialized to 0; it calculates πG(P0, Pw) for all w, 0 ≤ w ≤ n–1, and leaves 
k set to n. We describe the general logic of C(Y, h). 
 
At stage k, when we first come to the kth node, we need to calculate πY(Ph, Pk). We first calculate a 
temporary value for this; if h = k, the temporary value is Λ (the empty string), and we set 
 

πY(Ph, Ph) = Λ        (R1) 
 
If h ≠ k, then we look at all edges, other than loopbacks, which lead to Pk. Let us refer to these as 
X1 → Pk, ..., Xj → Pk. For every Xi → Pk, since it is not a loopback, we must have Xi = Pa for some 
a < k. A path from P0 to Pk, not ending in a loopback, must therefore be a path from Ph to some Xi 
= Pa, followed by Xi → Pk. However, we already have an expression for all paths from Ph to Pa, 
since we have already calculated πY(Ph, Pm) for all m, h ≤ m < k. Our temporary expression for 
πY(Ph, Pk) is therefore the union, for 1 ≤ i ≤ j, of all expressions of the form πY(Ph, Xi)·(Xi → Pk); 
that is, it is 
 

πY(Ph, Pk) = πY(Ph, X1)·(X1 → Pk) ∪ ... ∪ πY(Ph, Xj)·(Xj → Pk)   (R2) 
 
If there are no loopbacks which lead to Pk, this temporary expression is in fact the permanent 
expression for πY(Ph, Pk). If there are loopbacks, it is not, since a path from Ph to Pk might end in a 
loopback. This will always happen if Pk is the start of a loop L (note that L, being strongly 
connected, must have at least one loopback); and we can detect this, since we will have loops[k] = 
k+z ≠ k. If B is the body of L, then C(Y, h) now proceeds by calling C(B, k). When C(B, k) 
returns, k has been increased by z; and, for the old value of k, we have calculated: 
 

• permanent values of πY(Ph, Pm) for h ≤ m < k; 
• a temporary value of πY(Ph, Pk); and 
• permanent values of πB(Pk, Pm) for k ≤ m < k+z. From this we must calculate πY(Ph, Pm)  

 
for h ≤ m ≤ k+z; and the only new calculations here are those for k ≤ m ≤ k+z. These calculations 
proceed as follows. 
 
First we calculate πL(Pk, Pk); that is, a expression for all (simple and non-simple) cycles within the 
loop L which start and end at Pk. To do this, we look at all loopbacks which lead to Pk, again 
referring to these as X1 → Pk, ..., Xj → Pk. For every Xi → Pk, since it is a loopback, it leads to Pk 
from some Xi = Pa in L, and therefore in the body B of L. A simple cycle which starts and ends at 
Pk must therefore be a path in B from Pk to some Xi = Pa, followed by Xi → Pk. However, we 
already have an expression for all paths from Pk to Pa in B, since we have already calculated πB(Pk, 
Pm) for all m, k ≤ m < k+z–1. An expression for all simple cycles of this form is therefore the 
union, for 1 ≤ i ≤ j, of all expressions of the form πB(Pk, Xi)·(Xi → Pk); that is, it is 
 

πB(Pk, X1)·(X1 → Pk) ∪ ... ∪ πB(Pk, Xj)·(Xj → Pk) 
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An expression for all cycles, simple and non-simple, of this form, and including the empty cycle 
Λ, is therefore the * operator of regular expressions applied to this; that is, it is 
 

πL(Pk, Pk) = (πB(Pk, X1)·(X1 → Pk) ∪ ... ∪ πB(Pk, Xj)·(Xj → Pk))*   (R3) 
 
From this it is easy to calculate πL(Pk, Pm) for k ≤ m < k+z. A general path p within L from Pk to Pm 
will be entirely within B if it contains no loopbacks of L. If it does contain loopbacks of L, then 
that part of p which follows its last such loopback is within B, and the rest of p is a cycle (simple 
or non-simple) from Pk to itself. Therefore p must consist of such a cycle, followed by a path 
within B from Pk to Pm. We therefore have 
 

πL(Pk, Pm) = πL(Pk, Pk) · πB(Pk, Pm)       (R4) 
 
Finally we consider πY(Ph, Pm) for k ≤ m ≤ k+z. Since Pm is in the loop L, while Ph is not, any path 
from Ph to Pm must enter L through an entry point. Since G is reducible, L has only one entry 
point, namely Pk. Therefore any path from Ph to Pm in Y is a path from Ph to Pk in Y followed by a 
path from Pk to Pm in L, and we have 
 

πY(Ph, Pm) = πY(Ph, Pk) · πL(Pk, Pm)       (R5) 
 

 
 

Fig. 2.1 A path expression example 
 

2.4 An Example 
 
The method of the preceding section will now be illustrated, using the graph of Fig. 2.1. This is a 
reducible graph, with a unique loop tree, since the outer loop (induced by {2, 3, 4, 5, 6, 7, 8}) has 
exactly one entry point (node 2), while the inner loop (induced by {4, 5, 6}) also has exactly one 
entry point (node 4). We adopt the following notation: 
 

• G is the entire graph; 
• L1 is the outer loop; 
• B1 is the body of the loop L1; 
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• L2 is the inner loop; 
• B2 is the body of the loop L2. 

 
The steps in the algorithm are now as follows, keyed to the rules (R1) through (R5): 
 
Y h k Rule πY(Ph, Pk) 
G 1 1 R1 Λ 
G 1 2 R2 a (temporary) 
B1 2 2 R1 Λ (temporary) 
B1 2 3 R2 b 
B1 2 4 R2 b·c (temporary) 
B2 4 4 R1 Λ (temporary) 
B2 4 5 R2 d 
B2 4 6 R2 d·e 
L2 4 4 R3 (d·e·f)* 
L2 4 5 R4 (d·e·f)*·d 
L2 4 6 R4 (d·e·f)*·d·e 
B1 2 4 R5 b·c·(d·e·f)* 
B1 2 5 R5 b·c·(d·e·f)*·d 
B1 2 6 R5 b·c·(d·e·f)*·d·e 
B1 2 7 R5 b·c·(d·e·f)*·g 
B1 2 8 R5 b·c·(d·e·f)*·d·i ∪ b·c·(d·e·f)*·g·h  =  b·c·(d·e·f)*·(d·i ∪ g·h) 
L1 2 2 R3 (b·c·(d·e·f)*·(d·i ∪ g·h)·i)* 
L1 2 3 R4 (b·c·(d·e·f)*·(d·i ∪ g·h)·i)*·b 
L1 2 4 R4 (b·c·(d·e·f)*·(d·i ∪ g·h)·i)*·b·c·(d·e·f)* 
L1 2 5 R4 (b·c·(d·e·f)*·(d·i ∪ g·h)·i)*·b·c·(d·e·f)*·d 
L1 2 6 R4 (b·c·(d·e·f)*·(d·i ∪ g·h)·i)*·b·c·(d·e·f)*·d·e 
L1 2 7 R4 (b·c·(d·e·f)*·(d·i ∪ g·h)·i)*·b·c·(d·e·f)*·g 
L1 2 8 R4 (b·c·(d·e·f)*·(d·i ∪ g·h)·i)*·b·c·(d·e·f)*·(d·i ∪·g·h) 
G  1 2 R5 (b·c·(d·e·f)*·(d·i ∪ g·h)·i)* 
G  1 3 R5 a·(b·c·(d·e·f)*·(d·i ∪ g·h)·i)*·b 
G  1 4 R5 a·(b·c·(d·e·f)*·(d·i ∪ g·h)·i)*·b·c·(d·e·f)* 
G  1 5 R5 a·(b·c·(d·e·f)*·(d·i ∪ g·h)·i)*·b·c·(d·e·f)*·d 
G 1 6 R5 a·(b·c·(d·e·f)*·(d·i ∪ g·h)·i)*·b·c·(d·e·f)*·d·e 
G 1 7 R5 a·(b·c·(d·e·f)*·(d·i ∪ g·h)·i)*·b·c·(d·e·f)*·g 
G 1 8 R5 a·(b·c·(d·e·f)*·(d·i ∪ g·h)·i)*·b·c·(d·e·f)*·(d·i ∪ g·h) 
 
2.5 Non-Reducible Graphs 
 
In order to extend this method to a graph G which is not reducible, it is necessary to consider all 
possible loop trees of G. In the worst case, there may be an exponential number of such loop trees. 
This is therefore not a reasonable method in this case, since Tarjan has given, in [7], a method 
which runs in polynomial time. 
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3 Edge-Disjoint Spanning Trees 
 
3.1 Introduction 
 
In what follows, all graphs are taken to be directed. A rooted graph G contains a vertex r, called 
its root, such that for every vertex v in G there is a path from r to v. A spanning tree of G is a 
subgraph of G which is a directed tree, and which contains all vertices of G. Two spanning trees 
of G are edge-disjoint if they have no edges in common. Such trees have many uses, as noted in 
[8]. 
 
The discovery that every graph whatsoever has an inherent structure of loops within loops, 
representable by a loop tree [1], raises the question as to what such a loop tree must look like, in a 
graph having two edge-disjoint spanning trees, each with the root r. We here provide a necessary 
and sufficient condition for this, namely that every vertex in G other than r, and every loop in T 
not containing r, has at least two entry edges, as these are specified in Definition 3.1 below. We 
emphasize that our condition does not provide any improvement in the efficiency of finding two 
edge-disjoint spanning trees with the same root; indeed, it is already possible to do this in linear 
time [8]. Rather, our condition becomes a way of visualizing graphs which do, and which do not, 
have two such spanning trees, in order to improve our informal understanding of them. 
 
We also show that a graph with a unique loop tree, and having at least two vertices, cannot have 
two edge-disjoint spanning trees rooted at r. 
 
3.2 Some Lemmas about Loop Trees 
 
Basic loop tree theory was reviewed in section 1 above. Here we will need four more lemmas 
about loop trees. 
 
LEMMA 3.1. Given a loop tree T for a graph G, and a cycle C in G, there exists a unique loop L 
in T such that C both contains the head of L and is itself contained entirely in L. 
 
PROOF. Clearly C is contained in some non-trivial strong component L of G, which is an outer 
loop of G. Suppose first that C does not contain the head h of L. Then we argue by induction on 
the number of vertices in L; C is completely contained within the body B of L, and therefore 
within some non-trivial strong component L´ of B, where L´ has fewer vertices than L (note that 
loops within L´ are also loops within L). Now suppose that C contains h, and, as before, is 
contained entirely in L. Here L is unique in this sense because C is contained neither in any other 
strong component of G (which must be disjoint from L) nor in any loop contained in L (because 
such a loop cannot contain h). This completes the proof. 
 
LEMMA 3.2. Given a loop tree T of a graph G with root r, and any vertex z in G, there is a path 
from r to z which includes no loopbacks in T. 
 
PROOF. We order the vertices of G as v1, v2, ..., vn, according to the fundamental theorem of loop 
trees. We refer to vi-vj as a normal edge if i < j; that is, if it is not a loopback. We start by showing 
that, given any vertex y in G other than r, there is a normal edge to y from some x in G. Otherwise, 
the only edges to y would be loopbacks, implying that y is the head of some loop L in T. 
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Therefore, since y is not r, y is an entry point of L; so there must be an edge to y from some x in G 
which is not in L. This edge cannot be a loopback, since a loopback to the head of L is always 
from somewhere in L; therefore it is a normal edge. It follows that there is a normal edge to z from 
some vertex z1 in G, and then to z1 from some z2, and so on back to r. This produces a path from r 
to z containing normal edges only, that is, containing no loopbacks, and completes the proof. 
 
LEMMA 3.3. Given a loop L in a loop tree T of a graph G with root r, and an edge e-h, where h 
is the head of L but e is not in L, there is a path from r to e which contains no vertices in L. 
 
PROOF. As before, we order the vertices of G as v1, v2, ..., vn. If the indices of L are vi, vi+1, ..., vj, 
then h = vi, as we have seen. Here e-h cannot be a loopback, since then both e and h would have to 
be in L. Therefore, e-h is a normal edge, and e = vk for k < i. By Lemma 3.2, there is a path π from 
r to e involving no loopbacks; and all the vertices of π must then also have indices less than i, and 
thus cannot be in L. This completes the proof. 
 
LEMMA 3.4. Given a loop L in a loop tree T of a graph G with root r, there is a path from r to 
the head h of L which contains no vertices in L other than h. 
 
PROOF. If h = r, we are done. Otherwise, h is an entry point, and there is an edge e-h, where h is 
not in L. The lemma follows by concatenating e-h to the end of the path from r to e which exists 
by Lemma 3.3. 
 
3.3 Bridges in Graphs 
 
A bridge in a graph G with root r is an edge v-w in G which is included in every path from r to w. 
Our work is based on the following result, cited by Tarjan [8], which notes that it follows from 
more general work of Edmonds [9]. 
 
THEOREM 3.1. A graph with root r has two edge-disjoint spanning trees, each with root r, if and 
only if it has no bridges. 
 
This is an immediate corollary of Lemma 1 of [8], which is a bit more general; it says that every 
bridge in G must be in every spanning tree with root r, and that there always exist two spanning 
trees, having root r, whose only common edges are the bridges in G. 
 
Note that the definition of graphs in [8] does not allow them to have self-loops; however, Theorem 
3.1 remains true, even in the presence of self-loops. Let G be a graph with root r, and let G´ be the 
result of eliminating all self-loops from G. A self-loop cannot be in a spanning tree, since a tree 
contains no cycles; hence G has two edge-disjoint spanning trees if and only if G´ does. This 
holds, by the theorem, if and only if G´ has no bridges. However, a self-loop can never be a 
bridge, by definition; so G´ has no bridges if and only if G does not. 
 
The definition of graphs in [8] also allows them to have multiple edges. Loop trees were originally 
developed for graphs without multiple edges, but the theory is easy to generalize; a strong 
component containing an edge v-w must contain any further edges from v to w. Consider now a 
graph G with root r, and with a loop tree T. Let us replace each bridge v-w in G by two edges, 
each going from v to w, producing a graph G´. Clearly a multiple edge cannot be a bridge, since 
any path from r to w could always use a different edge from v to w; thus G´ has no bridges, and 
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yet G´ has the same loop tree T that G does. Thus any loop tree whatsoever can be a loop tree of a 
graph with no bridges, and hence with two edge-disjoint spanning trees rooted at r. It follows that 
the existence of such spanning trees is not derivable from the form of T, if multiple edges are 
allowed. In what follows, therefore, we assume that our graphs have no multiple edges. 
 
We now consider certain conditions under which a graph with the root r has a bridge v-w. The 
most obvious case is that in which w has in degree 1; so in fact all paths whatsoever, going to w, 
must use the edge v-w. There is, however, another general case, involving loop trees. Let w be the 
unique head of a loop L, somewhere in a loop tree of a graph. Suppose that there is only one edge, 
v-w, which goes to w from outside L (although there will be at least one other edge to w from 
inside L). Then v-w is a bridge. Any path from r to w must enter L at some point, which must be 
an entry point of L; and, by assumption, this must be w, and the only way to get to w from outside 
L is through the edge v-w. 
 
Both kinds of bridge are illustrated in Fig. 3.1, where the root is taken to be the vertex A. The 
edges B-C and C-D are bridges, here, since C and D both have indegree 1. The vertex B has in 
degree 2, but the edge A-B is still a bridge because it is the only way to get to B from the root (A). 
Note that D-B is not a bridge, since we can get from A to B without going through D-B. 
 
3.4 A Loop Tree Condition for Bridges 
 
We now give a necessary and sufficient condition for an edge in a rooted graph to be a bridge. 
 
THEOREM 3.2. An edge v-w in a graph G with root r is a bridge in G if and only if either: 
 
 (a) w has indegree 1 in G, or 
 (b) w is the unique entry point of a loop L, somewhere in a loop tree in G, and v is not                
contained in L, and v-w is the only edge to w from outside L. 
 

 
 

Fig. 3.1. Bridges in a graph 
 
PROOF. We have seen in section 3.3 above that any edge satisfying either of our conditions (a) 
and (b) is a bridge. We now show that these are the only two kinds of bridge that G can have. 
Suppose that v-w is a bridge. If there is no edge u-w for u ≠ v, then we have case (a) above. Now 
suppose that such an edge u-w exists. Since G is a rooted graph, there is a simple path π from r to 
u. Suppose that π did not include v; then, by concatenating the edge u-w to the end of π, we would 
obtain a path from r to w which does not include v, contradicting our assumption that v-w is a 
bridge. Therefore π must include v. 
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In particular, there are simple paths π1, from r to v, and π2, from v to u. Here π1 does not include 
the edge v-w; otherwise it would have to go back to v, and it would not be a simple path. Suppose 
now that π2 does not include the edge v-w. It would then be possible to go from r to v (along π1), 
from there to u (along π2), and then along the edge u-w. This gives a path from r to w that does 
not include the edge v-w, which also contradicts our assumption that v-w is a bridge. Therefore π2 
includes the edge v-w; and, in particular, there is a path from w to u. This path, followed by the 
edge from u to w, constitutes a cycle C. 
 
We now show that C cannot include v. Suppose the contrary; then, in particular, there are paths 
π3, from w to v, and π4, from v to u. Here π4 does not include w, and thus does not include the 
edge v-w. Thus π1, from r to v, followed by π4, from v to u, followed by the edge u-w, provides a 
path from r to w without including the edge v-w, which is contained in neither π1 nor π4. Once 
more this contradicts our assumption that v-w is a bridge; therefore C does not include v. 
 
Now consider a loop tree T for G. Let L be the loop which exists by Lemma 3.1, so that C 
contains the head h of L and is itself entirely contained within L. We show that L cannot include v. 
Suppose the contrary; then, since C does not include v, there is a path π5 from h to w, along C, that 
does not include v. By Lemma 3.4, there is always a path π6 from r to h which includes no 
vertices in L other than h, and which, therefore, also does not include v (note that v ≠ h, since C 
contains h but not v). Concatenating π6 and π5, we obtain a path from r to w that does not include 
v, again contradicting our assumption that v-w is a bridge. 
 
Since w is in L, while v is not, it follows, by definition, that w is an entry point of L. We now 
show that w is the only entry point of L. Suppose that L has another entry point q ≠ w. Consider a 
second loop tree T´, for which q is the head of L. By Lemma 3.4, there is then a path π7 from r to 
q which contains no vertices in L other than q. Therefore, π7 does not contain w and thus does not 
contain the edge v-w. Since L is strongly connected, there is a path π8 in L from q to w. Here π8 
also does not contain the edge v-w, since π8 is entirely within L, while v is outside L. 
Concatenating π7 and π8, we obtain a path from r to w which does not contain the edge v-w; and 
once more this contradicts our assumption that v-w is a bridge. 
 
Finally we show that v-w is the only edge to w from outside L. Suppose that there is an edge e-w 
from outside L, where e ≠ v. By Lemma 3.3, there is a path π9 to e from r which contains no 
vertices in L, and therefore does not include the edge v-w. Concatenating the edge e-w to π9, we 
obtain a path from r to w that does not include the edge v-w. Again this contradicts our assumption 
that v-w is a bridge, and completes the proof. 
 
3.5 The Main Result on Edge-Disjoint Spanning Trees 
 
We now provide a necessary and sufficient condition for there to be two edge-disjoint spanning 
trees in the graph G, with the same root r; or, what is the same thing (by Theorem 3.1), for there to 
be no bridges in G. This is based on the following definition. 
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DEFINITION 3.1.  Given a graph G with a loop tree T, an entry edge of a vertex w in G is an 
edge to w from some vertex v ≠ w. An entry edge of a loop L in T is an edge to some vertex w in 
L from some vertex v outside L. 
 
THEOREM 3.3. A graph G with root r and loop tree T has no bridges (and therefore has two 
edge-disjoint spanning trees with root r) if and only if every vertex of G other than r, and every 
loop of T not containing r, has at least two entry edges. 
 
PROOF. It suffices to show that the condition above holds if and only if G has no bridge of either 
type (a) or (b), as specified in Theorem 3.2. Let T be a loop tree of G, and let w be a vertex in G, 
with w ≠ r. Since G has the root r, there is a simple path from r to w in G. Let v-w be the last edge 
on this path; here we must have v ≠ w. If w has indegree 1, then w has only one entry edge. If w is 
the unique entry point of a loop L in T, and v is not contained in L, and v-w is the only edge to w 
from outside L, then L has v-w as its only entry edge, and L does not contain r (since otherwise it 
could not contain the entry point w). Conversely, suppose that w does not have at least two entry 
edges. Since G has the root r, and w ≠ r, w has one entry edge v-w (with v ≠ w); hence v-w is a 
bridge of type (a). Likewise, if L does not contain r, and does not have at least two entry edges, it 
must have one entry edge, say v-w. In that case w is the only entry point of L, and v is not con-
tained in L, and v-w is the only edge to w from outside L (otherwise w would have two entry edges 
from vertices unequal to w). Therefore, v-w is a bridge of type (b), completing the proof. 
 
3.6 Innermost Loops and Multiple Entry Points 
 
Theorem 3.3 allows two entry edges to the same entry point of a loop. We now show that this is 
not allowed for innermost loops, where we disregard self-loops in taking a given loop to be 
innermost. This result will be needed in our treatment, in section 3.7 below, of a graph having a 
unique loop tree. 
 
LEMMA 3.5.  A graph G with root r, and with no bridges, and with at least one vertex other than 
r, must have at least one loop not containing r, and not a self-loop. 
 
PROOF. Let v1 be any vertex of G, other than r. Here v1 must have at least two entry edges, by 
Theorem 3.3, and at least one of these is from a vertex (call it v2) other than r, since G has no 
multiple edges. Similarly, v2 must have at least two entry edges; and at least one of these is from a 
vertex (call it v3) other than r, and so on. This produces a sequence vk of vertices, with an edge 
from vk+1 to vk for all k ≥ 1. Since G is finite, this sequence must eventually repeat, say vi = vj, 
for i < j, so that vj-vj–1-...-vi (= vj) is a cycle C, not containing r. 
 
Let B be the graph obtained from G by removing any edges of G which lead to r. Here C is 
contained in B, and therefore in some strong component L of B; and L does not contain r, since it 
contains no edges which lead to r. There are now two cases; L may be a strong component of G, 
or, if it is not, it is contained in some strong component of G. This must have r as its only 
additional vertex; and thus r is its head and L is its body. In either case, L is a loop in G, not con-
taining r. Here v2 ≠ v1 in the above, by Definition 3.1, since the edge from v2 to v1 is an entry 
edge of v1; so L is not a self-loop. This completes the proof. 
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The condition that G have at least one vertex other than r is clearly necessary here; indeed, if G 
has just the vertex r, and no edges, then it has no bridges, and no loops. 
 
THEOREM 3.4. Let G be a graph with root r, and with a loop tree T. If G has no bridges, then 
any loop L in T, other than a self-loop, and containing no inner loops of its own, other than self-
loops, either contains r or has at least two entry points. 
 
PROOF. Let L be as in the statement of the theorem, except that it has only one entry point w and 
does not contain r. Since L is not a self-loop, it contains some vertex z ≠ w. By Theorem 3.3, L 
has two entry edges; these are then edges u-w and v-w. Since G has no bridges, it has two edge-
disjoint spanning trees T1 and T2, with root r, by Theorem 3.1. Since T1 is a spanning tree, it 
includes z, so that there is a simple path πz from r to z in T1. Since z is in L, and w is the only 
entry point of L, πz must enter L at w. Let πź  be that part of πz which leads from w to z. Then πź  
is also a simple path, and thus does not include w except at the start; therefore πź  does not include 
any loopbacks of L. Also, πź  never leaves L, because otherwise it would have to re-enter L at w, 
since w is the only entry point of L. Therefore πź  is completely contained in the body B of L. 
Since this is true of any z in L, the union of all πź  over all z in L defines a spanning tree T1´ of B, 
with root w. Applying all these arguments to T2, we obtain a spanning tree T2´ of B, also with 
root w. The trees T1´ and T2´ are edge-disjoint, since T1 and T2 are edge-disjoint. It follows from 
Theorem 3.1, applied to B (which has the root w), that B has no bridges. Since B contains z ≠ w, it 
now follows from Lemma 3.5 that B contains a loop L´, not a self-loop, with w not in L´. Here L´ 
is a loop inner to L, contradicting our hypothesis, and completing the proof. 
 
A fundamental property of loop trees is that a loop containing the root r cannot contain any entry 
points at all; this is why that case is excluded from Theorem 3.4. Indeed, a graph with no bridges 
(such as, for example, a complete graph on more than two vertices) can easily have a loop 
containing r. 
 
3.7 Unique Loop Trees and Edge-Disjoint Spanning Trees 
 
We now show that a graph with root r, and with a unique loop tree — that is, either one with no 
loop at all, or one in which every loop has a unique head — must have at least one bridge, and 
thus, by Theorem 3.1, cannot have two edge-disjoint spanning trees rooted at r. The only 
exception to this is a graph with just one vertex. 
 
LEMMA 3.6.  Let G be a graph with root r and loop tree T; let L be a loop in G, which contains r; 
and let B be the body of L. If L has no bridges, then neither does B. 
 
PROOF. If L has no bridges, then it has two edge-disjoint spanning trees T1 and T2, rooted at r, 
by Theorem 3.1. But T1 and T2 cannot contain loopbacks to r; otherwise they would contain 
cycles, and a tree cannot contain cycles. Thus T1 and T2 are also edge-disjoint spanning trees of 
B, which shows that B has no bridges, again by Theorem 3.1. 
 
THEOREM 3.5. A graph G, rooted at r, with a unique loop tree T, and containing at least two 
vertices, must have a bridge. 
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PROOF. Suppose the contrary, so that G has no bridges. Since G has at least two vertices, it has 
at least one loop in T, which is not a self-loop, by Lemma 3.5. Clearly, any self-loop which is a 
loop in T must be a leaf in T; let us remove from T any such leaves, producing T´. Let L be a leaf 
in T´. There are now two cases. Suppose first that L does not contain r; it then satisfies the 
conditions of Theorem 3.4, and thus has at least two entry points, say x and y. Therefore G has at 
least two loop trees, since there is at least one of these with x and with y as the head of L. This 
contradicts our hypothesis. 
 
Now suppose that L contains r, so that r is the head of L. Let B be the body of L, and consider a 
bridge v-w in L, so that any path from r to w in L contains v-w. However, any path from r to w in 
G must stay entirely in L; otherwise, it would have to re-enter L through an entry point, and, since 
L contains r, it has no entry points. Hence v-w would in fact be a bridge in G. This contradiction 
shows that L, in fact, has no bridges; and, by Lemma 3.6, neither does B. Since L is not a self-
loop, it contains at least two vertices, as does B. Therefore, by Lemma 3.5 applied to B, it contains 
a loop L´, not containing r, and not a self-loop. Here L´ is a loop inner to L, contradicting our 
assumption that L is a leaf in T´, and completing the proof. 
 
The condition that G have at least two vertices is necessary, since a graph with just one vertex has 
a unique loop tree but has no bridges. A self-loop, even in this case, is not a bridge, since it is not 
on the null path from r to itself. Also, a graph with just one vertex r does have two edge-disjoint 
spanning trees, namely T1, which contains just r and no edges, and T2 = T1. Even though T1 and 
T2 are equal, they are still edge-disjoint; they have no edges in common, since they have no edges 
at all. 
 
It is possible for a graph, rooted at r, and having an outer loop which is a self-loop, to have two 
edge-disjoint spanning trees, both rooted at r, as shown in Fig. 3.2. It is also possible, in a graph 
having two edge-disjoint spanning trees, for a loop which is not an innermost loop to have a single 
entry point, as, for example, the loop L2 in Fig. 3.3. In both cases, one spanning tree is shown 
with bold gray arrows, and the other one with bold black arrows; edges with light black arrows are 
not in either spanning tree. Note that every vertex in each of these graphs, other than r, has at least 
two entry edges, although r has no entry edges at all. 
 

 
 

         Fig. 3.2. Edge-disjoint spanning tree examples  Fig. 3.3. More examples 
 
In the case of a graph G with multiple edges, the most we can say here is that, if G has a unique 
loop tree and contains at least two vertices, it must have an edge v-w which is either a bridge, or 
would be a bridge if all other (multiple) edges from v to w were removed from G. 
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4 Feedback Vertices 
 
In this section, vertices are what are often called nodes in a graph. A feedback set is a set of ver-
tices in a strongly connected graph, such that every cycle in the graph must contain at least one 
vertex in the set. If a feedback set contains just one vertex V, then V is known as a feedback 
vertex. The discovery that every graph whatsoever has an inherent structure of loops within loops, 
representable by a loop tree [1], raises the question as to what such a loop tree must look like, in a 
graph having a feedback vertex. 
 
We here provide a necessary and sufficient condition for a graph G to have a feedback vertex. The 
condition is that G have a loop tree T with respect to which G has no parallel loops and no 
conditional loops, in a sense which we define; and that its innermost loop L, which must be unique 
to T, contains a vertex which covers every other vertex in L, as this is defined in [3]. We 
emphasize that our condition does not provide any improvement in the efficiency of finding all 
feedback vertices in a graph; indeed, it is already possible to do this in linear time [4]. Rather, our 
condition becomes a way of visualizing graphs which do, and which do not, have feedback 
vertices, in order to improve our informal understanding of them. 
 
Feedback vertices, and feedback sets in general, have important applications in logic design [3]. 
They are also useful in the construction of cut points, as part of the proof of correctness of a 
program [10]. We have done previous work [11] which attempts to develop what would be called, 
using the terminology above, a “good” feedback set for this purpose. 
 
4.1 Graphs with Feedback Vertices 
 
In order to motivate our theorem, let us first look at a few graphs which have feedback vertices. 
Clearly, if a graph G contains one and only one cycle, then every vertex in that cycle is a feedback 
vertex. More generally, if G has only one strong component L, whose body is a dag, then the head 
of L is a feedback vertex. There are, however, more general such graphs; as, for example, that of 
the matrix product program of Fig. 4.1. Here there are three nested loops, as indicated by the 
structured program at the top. This is converted into an unstructured program, whose flowgraph is 
then given. It should be clear, however, that the vertex containing the statement S = 
S+A[I,K]*B[K,J] is a feedback vertex. This example may be generalized to allow any number of 
nested loops, rather than just three. 
 
4.2 Graphs without Feedback Vertices 
 
We now look at some conditions under which a graph cannot have a feedback vertex. The most 
obvious of these involves what we may call parallel loops; that is, two or more loops in a loop tree 
that are siblings (that is, they have the same parent). Since such loops are strong components of 
the body of their common parent, they are disjoint and thus contain disjoint cycles; so a graph 
having parallel loops cannot have a feedback vertex. 
 
If T contains no parallel loops, then there can be at most one non-trivial strong component L1 of 
G. The body B1 of L1 can then contain at most one non-trivial strong component L2, and so on. 
Every loop tree of such a graph, therefore, is linear in the following sense. 
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DEFINITION 4.1.  A loop tree T of a graph is linear if there is some n ≥ 0 such that T comprises 
n loops L1, ..., Ln with each Li being an inner loop within Li–1 for 2 ≤ i ≤ n. 
 
Another such condition involves a loop that is not always done when its parent loop is done. We 
refer to this as a conditional loop, since the most common form of it is an inner loop L´ within an 
if-statement in its parent loop L. There is thus a cycle C in L which is disjoint from L´. Since L´ 
also contains at least one cycle, there are two disjoint cycles in the graph, and therefore there can-
not be a feedback vertex. It will be necessary, however, to use a slightly more general definition of 
a conditional loop; instead of requiring that C be in L, we merely require that C be not disjoint 
from L. 
 

 
 

Fig. 4.1. A matrix-product program with a feedback vertex 
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We may justify this choice informally as follows. Suppose that H is the head of L, and that H is 
immediately followed by a vertex N which is a conditional exit from L. Thus it is possible to enter 
L at H, go to N, and take the conditional exit without doing L´. Here, then, L´ is a conditional loop 
in an informal sense, since L can be entered without doing L´. On the other hand, if L is an outer 
loop of the program, and there is no cycle in L which is disjoint from L´, there can still be a 
feedback vertex in L´. However, now suppose that L itself is contained in another loop K. There 
will then be a path which starts at the head X of K, goes through H and N and back into K, and 
eventually back to X. This will be a cycle, disjoint from L´, and so G cannot have a feedback 
vertex. 
 
Accordingly, we make the following definition. 
 
DEFINITION 4.2.  A conditional loop in a loop tree T of a graph G is a loop L in T, such that 
there is a cycle C in G, disjoint from L, but not disjoint from the parent of L in T. 
 
The two kinds of conditional loop are illustrated in Figs. 4.2 and 4.3. In Fig. 4.2, the inner loop is 
conditional in the ordinary sense; it is not done at all, within the outer loop, when the cycle 
involving cond1 and cond2 is done. The structured form of this loop is shown at the top left; a 
while loop inside an if  statement, which is inside another while loop, as here, always leads to this 
kind of conditional loop. In Fig. 4.3, the loop L3 is not conditional in this sense, but it is still 
conditional because there is a cycle, A-D-E-A, which is disjoint from L3, but not disjoint from L2, 
the parent of L3. 
 

 
 

Fig. 4.2. A conditional loop 
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4.3 Loop Covers 
 
We now extend some terminology used in [3]. A vertex x is said to cover another vertex y, in a 
graph G, if all cycles in G which contain y also contain x. A feedback vertex for a graph, then, is 
one which covers every other vertex in the graph. We here define a local version of this. 
 
DEFINITION 4.3.  A vertex x is said to cover a loop L if it covers every vertex in L. 
 
We will be concerned exclusively with vertices which cover innermost loops. In particular, if such 
a loop L has exactly one entry point H, then we can easily see that H covers L. In fact, let y be a 
vertex in L, and let C be a cycle containing y. If C is not entirely contained in L, it must contain H 
because H is the only entry point of L, so that C can enter L only through H. If C is entirely con-
tained in L, then again C must contain H, because L is an innermost loop and so the body of L is a 
dag, which cannot contain the cycle C. 
 
There are, however, other ways that a loop can be covered by one of its vertices, as shown in Fig. 
4.4; here that vertex is marked as V, in each case. Note that, even if a loop has only one exit point, 
that point might not be a loop cover; thus the vertex X in Fig. 4.5, for example, does not cover A, 
since the cycle A-B-C-A contains A but does not contain X. Another example is shown in Fig.4.6; 
this is the same graph that was given in Fig.4.3, except that B, rather than D, is now the head of 
L2. This time, there is no L3, because the body of L2, with B as its head, is a dag. Here there are 
two disjoint cycles, namely A-D-E-A and B-C-F-B, having non-empty intersections with L2; so 
no vertex can cover L2. 
 
4.4 The Main Result on Feedback Vertices 
 
THEOREM 4.1. A graph G has a feedback vertex if and only if it has a loop tree T for which all 
of the following are true: 
 

 
 

Fig. 4.3. Another kind of conditional loop 
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Fig. 4.4. Examples of a loop being covered by one of its vertices 
 

 
Fig. 4.5. Loops without loop covers Fig. 4.6. More loops without loop covers 

 
 (a) G has no parallel loops (and therefore T is linear); 
 (b) G has no conditional loops; 
 (c) The innermost loop of T contains a vertex V which covers it (as in Definition 4.3). 
 
PROOF. We saw in section 4.2 above that, if G has parallel loops, or a conditional loop, it cannot 
have a feedback vertex. Also, if G has such a vertex V, then V must be in the innermost loop L, in 
any loop tree. This is because it must, in particular, be contained in every cycle in L; and we know 
that L contains at least one cycle, because, as a loop, it is non-trivial strongly connected. Here V, 
being a feedback vertex, must, in particular, cover L. Thus the conditions (a)-(c) above are 
necessary; we now show that they are sufficient. 
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As in Definition 4.1, we denote the loops by L1 through Ln. Let Hi be the head of Li, for 1 ≤ i ≤ n, 
and let C be any cycle in G. By Lemma 3.1, there is some Lk such that C contains Hk and is 
contained entirely in Lk. We now show, by induction on i, that C has a non-null intersection with 
Li for k ≤ i ≤ n, and thus, in particular, with Ln. By hypothesis, this holds for i = k. In general, if C 
has a non-null intersection with Li, but not with Li+1, then Li+1 is, by Definition 4.2, a condi-
tional loop, contrary to hypothesis. Thus C has a non-null intersection with Ln, and therefore 
contains V, since V covers Ln. This completes the proof. 
 
4.5 Feedback Vertices and Multiple Loop Trees 
 
The above theorem places strong restrictions on the loop tree T; this does not, however, preclude a 
graph with a feedback vertex from having more than one loop tree. Indeed, it might have two loop 
trees with different heights, as shown in Figs. 4.7 and 4.8. Here, if H1 is the head of L1, as in Fig. 
4.7, there is no inner loop; if H2 is the head of L1, as in Fig. 4.8, then L1 has the inner loop L2. 
However, in both cases, the loop tree is linear; and the feedback vertex F (or H1, for that matter) is 
contained in the innermost loop, in each case, and covers that loop. 
 

 
 

          Fig. 4.7. Multiple loop trees  Fig. 4.8. Further multiple loop trees 
 

4.6 Further Investigations 
 
The determination as to whether a feedback set of size n exists, within a given graph, is NP-
complete [12]. By contrast, a loop tree, as defined in section 1 above, may be found in polynomial 
time. (The determination of all loop trees remains exponential, although for a low-level reason: 
the total number of loop trees for a graph may have exponential size; indeed, every permutation of 
the vertices of a complete graph corresponds to a loop tree for that graph.) In view of these facts, 
we will start by considering applications of feedback sets. 
 
Two such applications are mentioned in [4]. The first is concerned with the graphs of logic 
circuits, and is treated in [3]. The second, treated in [10], is directly concerned with flowgraphs, 
and is also related to some of our own earlier work. We take this up here at some length, and, in 
particular, we question whether the “best” feedback set, in that context, is the one with minimum 
size. 
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Also, in this section, we relate inner loops, in the sense of section 1 above, to Smith and Walford’s 
sets F, GF, and GR, introduced in [3]. We show that any graph with a feedback vertex has just one 
loop in an extended sense, although there might be more than one loop in its loop tree. We obtain 
a connection, in a special case, between loop trees and the concept of depth first numbering. Final-
ly, we use loop trees to estimate the size of a minimal feedback set. 
 
We note the following terminological differences among these papers: 
 
 Garey and Tarjan [4] Vertex  Arc  Cycle 
 Smith and Walford [3] Vertex  Arc  Loop 
 Alternative notation Node  Edge  Cycle 
 
4.7 Program Correctness and Feedback Sets 
 
Suppose we wish to prove the correctness of a program having a given flowgraph. We assume that 
our program is not structured, and may contain arbitrary go-to statements; in loop tree notation, 
there might be more than one loop tree for the graph. This may be accomplished in eight steps (see 
[11]): 
 

(1) Identify the terminal vertices of the graph and assign an exit assertion to each one; this is 
an assertion concerning the variables of the program which will hold at the time that that 
exit is taken. 

(2) Identify the initial vertex of the graph and assign an entry assertion to it; this is an 
assertion concerning the variables of the program which must hold when the program 
starts. (If the graph has more than one initial vertex, the entire proof of correctness is 
redone for each initial vertex.) 

(3) Make a statement of correctness of this program: if it starts at the initial vertex with the 
entry assertion holding, then (a) it will not loop endlessly; (b) it will not try to execute 
any statement S at a time when S is not well defined; and (c) when it gets to a terminal 
vertex, the corresponding exit assertion will hold. 

(4) Identify intermediate assertion points, or what Manna [10] calls cutpoints; there must be 
one such point in every cycle of the flowgraph. Associate an intermediate assertion with 
every such point. Define an assertion point of the program as either an initial vertex, a 
terminal vertex, or a cutpoint. 

(5) Identify the verification paths in the program; these are paths from one assertion point to 
another, with no assertion points in between. The assertion associated with the first (last) 
statement in a path is called the initial (final) assertion of that path. 

(6) State the verification conditions of the program, one associated with each verification 
path. Such a condition says that if the path is started with its initial assertion valid, then it 
will not try to execute any statement S at a time when S is not well defined, and that, 
when it reaches the end of that path, its final assertion will be valid. 

(7) Prove all the verification conditions. 
(8) Prove that the program terminates. (The techniques for this are relatively simple 

extensions of those above; we omit the details.) 
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Feedback sets arise in step (4) above, since the condition on a set of cutpoints is that every cycle 
in the flowgraph must contain at least one cutpoint. A simple way to choose cutpoints is to choose 
them as the destination points of reverse edges in the flowchart, relative to some ordering of the 
vertices (normally the order in which the corresponding program is written). 
 
4.8 Feedback Set Measures 
 
Let us now consider what makes a “good” set of cutpoints, or feedback set. The treatment given in 
[3] concerns finding such a set with as few vertices as possible; that of [12] shows that this 
problem is NP-complete. There are two possible general approaches to this situation. We may try 
to find a solution to the problem which, although exponential in the general case, “appears to be 
quite efficient for large graphs arising in practical applications” (see the abstract of [3]). Or we 
may question whether, for the purposes of program correctness proof, we actually want to 
minimize the number of vertices in a feedback set. 
 
In [11] we address the problem of finding a “best” set of intermediate assertion points, by which 
we mean one which minimizes the total length of all verification conditions as described in step 
(6) above. Since these are what have to be proved, we would like their total size to be as small as 
possible. Provided that we use internal size only (that is, not counting the lengths of the initial and 
final assertions in each verification condition, but only the lengths of what arises from the 
statements in the path), we show that this is minimized by choosing, as cutpoints, exactly the join 
points; that is, those of indegree greater than 1, in the program. In the present context, this has the 
further advantage that such points may be determined immediately from the flowgraph. 
 
4.9 Graph Partitions and Loop Trees 
 
In [3], as part of their algorithm for finding minimal feedback sets, Smith and Walford introduce 
sets F, GF, and GR. Here F is a set of vertices of the graph G, and G is then partitioned into GF 

and GR (that is, GF ∩ GR = Ø and GF ∪ GR = G). A vertex is in GF if and only if it is contained 
in at least one cycle of G which also contains a vertex in F, and is not contained in any cycle of G 
which does not contain a vertex of F. 
 
We may note first that F is a feedback set of a strongly connected graph G if and only if the 
corresponding GF = G (that is, GR = Ø). If F is not a feedback set, then there exists at least one 
cycle C in G which does not contain any elements of F, and any vertex V in C cannot be in GF 
and so must be in GR. If F is a feedback set and V is a vertex in G, then V is contained in some 
cycle (since G is strongly connected); any cycle containing V must contain some element of F, by 
definition of a feedback set, and so V is in GF, thus implying that GF = G. 
 
Now let the entire graph G be strongly connected, so that it is an outer loop, in our sense. Let F be 
a one-element set, containing only the head H of G. Then GR consists precisely of all vertices in 
inner loops of G. Note that if V is in an inner loop, that loop is in the body B of G and cannot 
contain H, so V is not in GF. Conversely, if V is not in GF, then V is in some cycle of G that does 
not contain H. That cycle is completely contained in B, and thus in some strong component of B, 
that is, an inner loop of G. 
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We may extend this example by including, within F, a single chosen head for each inner loop, in 
addition to H. The corresponding GR now consists precisely of all vertices in all second-level 
inner loops of G. Continuing this process recursively, we arrive at a set F containing the head of 
every loop in some specific loop tree of G; and this time GR = Ø. This is, therefore, one way of 
getting a feedback set F (see also section 8 below), although this F is not necessarily of minimum 
size. 
 
4.10 Feedback Vertices and Single Extended Loops 
 
Given any n > 0, we may construct a graph having n nested loops, and therefore with a loop tree 
of height n, but still having a single feedback vertex, as noted in section 4.9 above. Despite this, 
however, every graph having a feedback vertex must have one and only one “loop” L in an 
extended sense, namely that the head of L is not necessarily an entry point of L. As an example, 
consider the matrix product program of Fig. 4.1, namely: 
 
 I = 1    | FOR I = 1 TO N { 
1 J = 1    |    FOR J = 1 TO N { 
2 S = 0    |       S = 0 
 K = 1    |       FOR K = 1 TO N 
3 S = S+A[I,K]*B[K,J]  |          {S = S+A[I,K]*B[K,J]} 
 K = K+1    |       C[I,J] = S 
 IF (K <= N) GOTO 3  |    } 
 C[I,J] = S   | } 
 J = J+1    | OUTPUT "END" 
 IF (J <= N) GOTO 2  | 
 I = I+1    | 
 IF (I <= N) GOTO 1  | 
 OUTPUT "END"   | 
 
This program may be rewritten as follows: 
 
 I = 1    | I = 1 
 GOTO 1    | GOTO 1 
3 S = S+A[I,K]*B[K,J]  | WHILE (TRUE) { 
 K = K+1    |    S = S+A[I,K]*B[K,J] 
 IF (K <= N) GOTO 3  |    K = K+1 
 C[I,J] = S   |    IF (K <= N) CONTINUE 
 J = J+1    |    C[I,J] = S 
 IF (J <= N) GOTO 2  |    J = J+1 
 I = I+1    |    IF (J > N) { 
 IF (I > N) GOTO 4  |       I = I+1 
1 J = 1    |       IF (I > N) BREAK 
2 S = 0    | 1:    J = 1 
 K = 1    |    } 
 GOTO 3    |    S = 0 
4 OUTPUT "END"   |    K = 1 
     | } 
     | OUTPUT "END" 
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It is not difficult, although a bit tedious, to check the logic of the two programs above and verify 
that they are the same. The head of the “loop” L, in the rewritten program, is the statement with 
label 3, and this is not an entry point of L. It should be clear, from this example, that rewriting a 
program in this way does not necessarily make it easier to understand, even though here we are 
replacing three loops by one. Also, although the statement with label 3 is also a feedback vertex 
for the graph, that fact does not help in the process of proving the program correct. Even though 
there is now only one intermediate assertion point, the total length of all the verification 
conditions of the program actually increases when this choice is made, as noted in [11]. 
 
In general, however, any graph with a feedback vertex V may be rewritten in this way. Here V 
becomes the head of L; with respect to V, the body of L is a dag, because otherwise it would have 
a cycle not containing V, contradicting the definition of a feedback vertex. However, in many 
cases (as above), V is not an entry point of L, so the graph does not necessarily have a loop tree of 
height 1. 
 
4.11 Depth First Numbers and Loop Trees 
 
The (preorder) depth first numbers (DFNs) of the vertices of a graph (also sometimes called 
discovery times) are in the sequential order in which they are encountered in a depth first search 
(DFS). Thus the DFN of the kth vertex to be encountered is k. Depth first numbers are treated in 
[4], and it is natural to ask whether there are connections between them and loop trees. At least in 
one special case, there is, indeed, a strong connection. 
 
Suppose that the loop L has no exits, that is, edges from a vertex in L to a vertex outside L. (This 
is uncommon in flowgraphs, although it frequently occurs in other kinds of graphs, such as call 
graphs.) Then there exist integers i and j, for any DFS, such that the DFNs of the vertices of L are 
precisely i, i+1, ..., j. Here i is the DFN of the first entry point of L (call it H) to be encountered in 
this DFS. No vertices of L, therefore, are encountered before H, and thus the DFN of such a vertex 
cannot be less than i. Since there are no exits from L, the only way the DFS can leave L is by 
popping H from its stack. Before this is done, every vertex in L must be encountered, since L is 
strongly connected. If j is the largest DFN of a vertex in L, therefore, all vertices of L, and only 
these vertices, have DFNs in the range from i through j. 
 
4.12 Estimating the Size of a Minimal Feedback Set 
 
We finally introduce lower and upper bounds on the size of a minimal feedback set, as an 
extension of the process of finding loop trees. 
 
THEOREM 4.2. Let G be a graph having a loop tree T with n vertices, m of which are leaves of 
T. Let k be the size of a minimal feedback set for G. Then m ≤ k ≤ n–1. 
 
PROOF. We first note that any two leaves of T represent disjoint subgraphs of G. In fact, let U 
and V be leaves, and, among all common ancestors of U and V, let X be the one farthest from the 
root. Let X represent a subgraph with body B, and let Y be that child of X which is also an 
ancestor of U. By the choice of X, we see that Y is not an ancestor of V, and therefore X has 
another child, Z, which is an ancestor of V. Since Y and Z are children of X, they represent 
distinct, and therefore disjoint, strong components of B. Since U and V are descendants of X and 
Y respectively, they also represent disjoint subgraphs. 



 
 
 
 
 
 
 

British Journal of Mathematics & Computer Science 4(5), 612-666, 2014 
 
 

636 
 

It follows that the m leaves of T represent mutually disjoint strongly connected sets, each of which 
contains at least one cycle. Any feedback set of G must contain one vertex in every such cycle, 
and its size must therefore be at least m. On the other hand, every vertex in T, other than the root, 
represents a loop with a head, and any cycle in the graph must pass through one of these heads. 
The set of all n–1 of these heads, therefore, is a feedback set for G, completing the proof. 
 
If G has more than one loop tree, then, by repeatedly applying the logic above, we see that m and 
n may be taken here, respectively, as the maximum value of m and the minimum value of n, over 
all loop trees of G. Such further tightening of these bounds, however, cannot be expected to go too 
far, in light of the fact that the problem of determining a minimum feedback set, in general, is NP-
complete ([12], as noted in [4] and [3]). 
 

5 Clustering Trees 
 
5.1 Loop Trees and their Generalizations 
 
We shall need two generalizations of the concept of a loop tree, as introduced in Section 1 above. 
Suppose first that we were to include trivial, as well as non-trivial, strong components in the tree, 
at every level. This would make the construction simpler and more general, in one sense; but the 
name “loop tree” would no longer be appropriate, since trivial strong components are not loops. 
Hence we use the term generalized loop tree for this case. Also, any graph has at least one loop 
tree, but we will here be concerned only with strongly connected graphs. For such a graph G, 
every loop tree has G as the root, whose only child is again G. This redundancy is unnecessary in 
our context, and we therefore speak of the basic loop tree of a strongly connected graph, namely 
the subtree whose root is the single child of the actual root. Combining these two constructions, 
we obtain the basic generalized loop tree (or BGL tree) of a strongly connected graph. 
 
5.2 Clustering Trees 
 
Our object is to compare these BGL trees with what Tarjan [13] calls decomposition trees; these 
have applications in cluster analysis. Since loop trees also involve decompositions, we will use a 
separate term, clustering trees, to refer to the trees studied in [13]. It is assumed that we have a 
strongly connected graph G in which all edges have distinct weights. The leaves of the clustering 
tree are the vertices of G, and we build this tree from the bottom up, adding edges in increasing 
order by weight. Whenever the addition of an edge causes two or more components A1, ..., Ak to 
coalesce into a single component A, we make A the parent of A1, ..., Ak in the tree. When the last 
edge is added, the tree is complete, with G as its root. 
 
Clustering trees and loop trees have very different motivations. Clustering trees are used in cluster 
analysis of data with an asymmetric similarity measure. The “distance” from A to B is not 
necessarily the same as that from B to A (as, for example, with flight times between cities, 
affected by prevailing winds). There is, however, always a “distance” from every vertex to every 
other, and these distances, or weights, are always distinct. The aim here is to find clusters, that is, 
groups of vertices, every one of which is close to every other one. Loop trees, by contrast, are 
used in the analysis of flowgraphs. The only obvious notion of distance, here, is distance of one 
statement from another in a program. However, here the vertices in the desired groups, or loops, 
might be far away from each other in the program, and our task is to find the loops. 
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Nevertheless, these two kinds of decomposition tree, for a graph G, have several similarities. In 
each of these trees, the root represents G; every vertex in the tree represents a strongly connected 
subgraph of G; and, if N1 is the parent of N2 in the tree, then G1 contains G2, where N1 
represents G1 and N2 represents G2. It therefore becomes a matter of mathematical interest to 
determine relations between these two kinds of tree. 
 
5.3 Top-Down Construction of Clustering Trees 
 
We find it useful to provide an alternative definition of a clustering tree. First we notice that, in 
the construction of such a tree, the actual values of the weights are never used, but only their 
order. Since the weights are all distinct, their order is unique. Formally, we may define an edge-
ordered graph as one with n edges given in the order e1, e2, ..., en. A graph in which the edges 
have distinct weights may then be identified with an edge-ordered graph, in which the kth smallest 
edge, in order of weight, is ek, for 1 ≤ k ≤ n. In what follows, therefore, we ignore weights, and 
assume that we have an edge-ordered graph. 
 
Secondly, our definitions become more precise when our tree is built top-down rather than 
bottom-up. When building the tree bottom-up, we add e1 first, then e2, and so on. When building 
it top-down, we start with all edges in the graph; then we remove en, then en–1, and so on. At 
each stage, then, we have left only the edges e1, e2, ..., ek for some k; and the strong components 
of the graph, with all the original vertices but with only these edges, are the leaves of that part of 
the tree which has so far been constructed, from the top down. 
 
Suppose now that we remove ek, leaving only the edges e1, e2, ..., ek–1. Here ek was in some 
strong component, which, at this stage, is a leaf v. Removing ek can affect only v, and no other 
strong component at this stage. It might happen that v is still strongly connected, even with ek 
removed, in which case the tree does not change at this stage. If the tree does change, it is because 
v, with ek removed, now has more than one strong component; each of these, at this stage, 
becomes a child of v. 
 
5.4 Decomposition Trees of Cycles 
 
Our first question is that of finding conditions on a graph G, with a BGL tree T, for which every 
clustering tree is the same as T. To simplify the statements of our theorems, we make the 
following definition. 
 
DEFINITION 5.1.  An edge-ordered graph G, with a BGL tree T, is said to have the loop 
clustering property if its clustering tree is the same as T. 
 
We now have a surprisingly simple answer to the question we raised. 
 
THEOREM 5.1. A graph G, with a BGL tree T, has the loop clustering property with any edge 
ordering whatsoever if and only if G is a single cycle (of any length). 
 
Of course, if G is in fact a single cycle, it has a unique BGL tree; in the general case, the 
correspondence between the two types of tree is specific to a particular BGL tree. 
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PROOF. First suppose G is a single cycle, and consider a BGL tree T for G, with G as the root. 
Regardless of how we choose a head h for G, there will be one and only one edge e in G which 
leads to h; and here e is the only loopback in G. If we remove e from G, producing the body B of 
G, then B is a dag, and thus every child of G in T is trivial. Now consider the clustering tree T´ of 
G, built from the top down. No matter which edge is removed first, the graph G, with only the re-
maining edges, is a dag, and thus every child of G in T´ is also trivial. Thus T and T´ are the same 
in this case, and G, with T, has the loop clustering property. 
 
Now suppose that G, with T, is not a single cycle. Since G is strongly connected, it must contain at 
least one cycle. Of all cycles contained in G, let C be one of shortest length j. Suppose first that j = 
1, so that C is a self-loop, involving an edge e from a vertex v to itself. Since G is not a single 
cycle, there must be another vertex in the graph, say w. Since G is strongly connected, there are 
paths from v to w and from w to v, so that k, the number of edges in G, is at least 3. We will now 
show that G has at least two different clustering trees, contradicting our assumption that a 
clustering tree is always the same as T. Let e1, e2, ..., ek be the edges of G. If e = e1, then e is 
removed last, in the top-down construction. At the second stage from the end, C is a leaf, and then, 
at the last stage, v becomes a child of C. On the other hand, if e = ek, where k ≠ 1, as we have 
seen, then e is removed first, in the construction. Since the cycle involving v and w has not yet 
been removed, v can never become a child of C, whose single edge has been removed at the first 
stage. Thus these two clustering trees are different. 
 
Finally suppose that j > 1, and let C = u1→u2→...→uj = u1. Since G is not C, there must be at 
least one edge é  in G which is not in C. We argue that there must also be at least one vertex w 
which is not in C. Otherwise, é  is ua→ub for some a and b. By combining é  with the path within 
C from ub to ua, we obtain a new cycle C´ whose length, by the construction, is strictly smaller 
than j, contradicting the choice of C. Since G is strongly connected, there is a path π in G from u1 
to w; let ui be the last vertex in π which is also on C. Since uj = u1, we can always assume i ≠ j 
here. Since w is not on C, so that w is not ui, there is a vertex w´ (possibly w´ = w) which 

immediately follows ui in π. Thus there are edges e 1́ = ui→ui+1 (where ui+1 exists since i ≠ j) 

and e 2́ = ui→w´ in G. Here e is part of a cycle C´, since G is strongly connected; and C´ ≠ C 
since C´ contains w´, which is not on C by the choice of ui. Also, e 1́ is in C but not in C´, while 
e 2́ is in C´ but not in C. Therefore, in the top-down process, if e 1́ is removed first, then C is bro-
ken but C´ remains, while if e 2́ is removed first, then C´ is broken but C remains. However, ui is 
on both C and C´; so, as before, we have a contradiction because G, with T, has at least two 
different clustering trees. This completes the proof. 
 
5.5 Bottlenecks 
 
Theorem 5.1 shows us that most edge-ordered graphs do not have the loop clustering property. We 
can ask, however, whether a given graph has any edge ordering at all, for which it has that 
property. That this is not true for every graph may be seen from Fig. 5.1. If A is the start node, 
then C→A and E→A are the loopbacks, and the remainder of the graph is a dag; and thus this 
graph has a unique BGL tree T, which has every individual vertex as a child of G, which is at the 
top. Now consider the top-down order in which edges are removed. If we remove A→B, B→C, or 
C→A first, the strong component {A, D, E} will remain in the clustering tree T´. If we remove 
A→D, D→E, or E→A first, the strong component {A, B, C} will remain in T´. Neither of these 
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components are in T, as we have seen; so no edge ordering of this graph has the loop clustering 
property. 
 
Consider now Fig. 5.2, which is much like Fig. 5.1 except for the vertex F. This graph has a 
unique BGL tree T, very much like that of the graph of Fig. 5.1. Suppose here that, in forming the 
clustering tree T´, we eliminate the edge A→F first. The resulting graph is a dag (it has no 
directed cycles, although that entire graph is an undirected cycle). Therefore we can eliminate the 
remaining edges in any order, and T´ will be the same as T. The important difference between the 
two graphs is that, in Fig. 5.2, we have an edge (namely A→F) which is contained in every cycle 
of the graph; in Fig. 5.1, we have no such edge. This leads us to the following definition. 
 
DEFINITION 5.2.  An edge in a rooted graph G, with root r, is a bottleneck if it is contained in 
every cycle within G that contains r. 
 
The justification for the name should be clear; if you start at r, you cannot get back to r except 
through the bottleneck. Bottlenecks are related to vertex covers [3]; a vertex x is said to cover the 
root r of a rooted graph G, if all cycles in G which contain r also contain x. Here we are requiring 
that all cycles in G which contain r also contain an edge (that is, the bottleneck), rather than a ver-
tex. 
 
Bottlenecks are also related to the concept of a bridge as defined by Tarjan [13]; that is, an edge e 
= u→v such that every path from r to v must go through e. In particular, a bottleneck in a strongly 
connected graph G is always a bridge in this sense; for suppose the contrary. Then there is a path π 
from r to v that does not contain e. Since G is strongly connected, there is then a simple path π´ in 
G from v to r which does not contain e (otherwise it would go back to v, and it would not be a 
simple path). Combining π and π´, we would obtain a cycle in G, containing r, but not containing 
e, contrary to hypothesis. On the other hand, not every bridge is a bottleneck; thus there are no 
bottlenecks in the graph of Fig. 5.1, and yet A→B, B→C, A→D, and D→E are all bridges. 
 
Often a graph G has a bottleneck for low-level reasons. For example, if there is only one edge 
leading from r, then that edge is clearly a bottleneck. Also, if G has one and only one loopback, 
then that loopback is a bottleneck, for a similar reason. However, these are not the only kinds of 
bottleneck, as may be seen from Fig. 5.3. By following either R→A→C, R→B→C, or 
R→A→B→C by either C→D→E→F→R or C→D→G→H→R, we obtain a cycle. These are the 
only simple cycles here which include the root R, and C→D is the only edge which is on all of 
these, and therefore the only bottleneck. 
 

5.6 The General Loop Clustering Property Criterion 
 
If G is strongly connected, with r being its head, and having a BGL tree T, we refer to a bottleneck 
as an outer bottleneck if it is not contained in any inner loops that G might have, in T. Not all 
bottlenecks are outer, as we may see from Fig. 5.4, which is the same as Fig. 5.3 with the loops L1 
and L2 shown. Here C→D is contained in the inner loop L2, and is therefore not an outer 
bottleneck. (This graph actually has a further inner loop, which is either {B, C, D, G} or {A, C, D, 
E}, depending on whether A or B is taken as the head of L2.) 
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LEMMA 5.1.  Let G be a strongly connected rooted graph with root r, and having an outer 
bottleneck e. Let B be the body of G, and let G´ be the graph obtained from G by removing e. 
Then the strong components of G´ are the same as those of B. 
 
PROOF. The root r is a trivial strong component of B. It is also a trivial strong component of G´, 
because otherwise r would be contained in a non-trivial strong component of G, and hence in a 
cycle of G containing r; and such a cycle must contain e, by Definition 5.2, and is therefore not in 
G´. Any strong component L of B, other than {r}, is a maximal strongly connected subset of B, 
and cannot contain r. Because e is an outer bottleneck, it is not contained in L; therefore L is 
contained in G´. It remains strongly connected, and it is also maximal strongly connected in G´ 
(and therefore a strong component of G´). This is because any strongly connected graph L´, 
contained in G´ and containing L, could not contain r, because r is a trivial strong component of 
G´; and it would remain strongly connected in G, and thus in B, contradicting our assumption that 
L is maximal strongly connected in B. The trivial strong components of G´ consist of all vertices 
which are not in non-trivial strong components of G´. These are, therefore, exactly those vertices 
which are not in non-trivial strong components of B; so these components are also the same in G´ 
as they are in B. This completes the proof. 
 
It should also be clear that the concepts of a bottleneck and an outer bottleneck are immediately 
extensible to loops within a BGL tree of G, in which the root of every such loop is taken to be its 
head. This extension is necessary in stating the main result of this section, as follows. 
 
THEOREM 5.2. Let G be a strongly connected graph with a BGL tree T. Then there exists an 
ordering of the edges of G, with respect to which G has the loop clustering property, if and only if 
every loop in T has an outer bottleneck. 

                                 
Fig. 5.1. Loop clustering property example                   Fig. 5.2. Another example 

 

        
 

Fig. 5.3. Bottlenecks and outer bottlenecks 
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Fig. 5.4. Another example 
 

PROOF. Let T be a BGL tree for G in which every loop has an outer bottleneck. As usual for 
trees, we define the level of a vertex in T as its distance from G (the root); and a level order of the 
vertices of T is an order v1, v2, ..., vj in which v1 is the root, followed by all vertices at level 2 (in 
arbitrary order), then all vertices at level 3, and so on. For 1 ≤ i ≤ j, let xi be an outer bottleneck of 
the loop represented by vi; and now choose the ordering e1, e2, ..., ek of the edges of G in such a 
way that ek = x1, ek–1 = x2, and so on, so that in general ek+1–i = xi. Usually j < k here, and the 
remaining edges e1, e2, ..., ek–j may be chosen in any order. 
 
Consider now the top-down construction of the clustering tree T´ for G, in this order. We first 
eliminate ek = x1, and, since this is an outer bottleneck for G as a whole, we are left with the graph 
G´ as in Lemma 5.1. By this lemma, G´ has the same strong components as does the body B of G; 
and all these become children of G in T´, exactly as in T. Now we eliminate ek–1 = x2, which is 
an outer bottleneck for some non-trivial strong component L of B. Here L is an inner loop, and, 
since x2 is an outer bottleneck for L, we are left with a graph G" which is like G´ as in Lemma 
5.1, but applied this time to L. By this lemma, G" has the same strong components as does the 
body B´ of L; and all these become children of L in T´, exactly as in T. We now proceed to 
eliminate ek–2 = x3, and so on. Because of the level ordering of the vertices of T, the parent L´ of 
any such vertex L is added to T´ before L is. Let v be an outer bottleneck of L, and let v´ be an 
outer bottleneck of L´. When v´ is eliminated, the strong components of the body of L´, including 
L, become part of T´, so that the same can happen to L when v is later eliminated. After 
eliminating x1 through xj, the only remaining vertices in either T or T´ are trivial, and no further 
building is done, so that in fact T = T´. 
 
Now suppose that some loop L in T does not have an outer bottleneck; we show that no ordering 
e1, e2, ..., ek of the edges of G leads to a graph having the loop clustering property. Assume the 
contrary, so that T = T´ for this ordering. Since L is in T, it is thus also in T´. Let i be the smallest 
integer such that, in the bottom-up process, when e1, e2, ..., ei have been added, L is included 
among the strong components produced so far. Therefore, when e1, e2, ..., ei–1 have been added, 
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L has not been so included, but adding ei causes L to be included. Consider now the remainder of 
the process of adding ei+1, ei+2, ..., ek. This process only combines existing strong components 
into larger ones; it cannot affect those parts of T´ which have already been constructed. When the 
process is finished, it produces T´, which, by assumption, is the same as T. Within T, however, the 
children of L are the (trivial and non-trivial) strong components of the body of L. Therefore, when 
L is first included by adding ei, these same strong components must already have been in that part 
of T´ that had been constructed so far. 
 
We now note that ei cannot be in any non-trivial strong component of the body of L, nor can it be 
outside L, since adding ei, in either of those cases, could not produce L by combining its strong 
components. However, ei, by assumption, is not an outer bottleneck of L, and therefore there is 
some cycle C in L, containing the head of L, that does not contain ei. Thus L cannot, in fact, be 
produced when ei is added, since C would have to be included in what is produced. This 
contradiction completes the proof. 
 
5.7 Multiple Null Node Expansions 
 
Using the terminology of Theorem 5.2, we see that there are strongly connected graphs for which 
T´ is never the same as T. We might ask, then, whether such a graph G might be expanded to form 
a graph G´ for which T´ = T for some choice of ordering of the edges of G´. Ideally, we would like 
G´ to be just as efficient as G, both in space and time, under some reasonable interpretation of 
these. In fact, this can always be done, using a generalization of the idea of a null node expansion. 
Given an edge v→w in a graph G, a null node expansion of G is a graph G´ obtained from G by 
adding a new vertex z, removing the edge v→w, and introducing two new edges v→z and z→w. If 
G is a flowgraph, any flow of execution along v→w is replaced by the use of v→z followed by 
z→w. Here z is assumed to take no additional space or time, so that the total space or time taken 
by any execution of G´ is the same as that of the corresponding execution of G. 
 
We generalize this notion by considering several edges v1→w, v2→w, ..., vj→w, all leading to the 
same vertex w. A multiple null node expansion G´ of G is now obtained by adding a new vertex 
z, as before; removing all the above edges; introducing the new edge z→w as before; and then 
introducing the further new edges v1→z, v2→z, ..., vj→z. Any flow of execution along any vi→w 

is replaced by the use of vi→z followed by z→w. As before, since z takes no additional space or 
time, the executions of G´ are as efficient as the corresponding executions of G. As with ordinary 
null node expansions, multiple null node expansions can be iterated, expanding several vertices 
like w in the process. We now show the utility of such expansions in this context. 
 
DEFINITION 5.3.  A unique loopback BGL tree is a BGL tree in which every loop has one and 
only one loopback. 
 
THEOREM 5.3. Any strongly connected graph, not having a unique loopback BGL tree, has an 
iterated multiple null node expansion which has a unique loopback BGL tree. 
 
PROOF. Let T be a BGL tree for G, and suppose that T is not a unique loopback tree. Given any 
loop L in T having the head w, and having j loopbacks v1→w, v2→w, ..., vj→w, for j > 1, we form 

the multiple null node expansion of G as above, in which L now has the single loopback z→w. By 
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repeating this process for every such loop in T, we obtain an iterated multiple null node expansion 
in which every loop has a single loopback. This completes the proof. 
 
COROLLARY.  For any strongly connected graph G, with a BGL tree T, there exists an ordering 
of the edges, either of G or of some iterated multiple null node expansion of G, with respect to 
which it has the loop clustering property. 
 
PROOF. We saw, at the end of section 5.5 above, that a unique loopback in a loop L is always a 
bottleneck. It is also an outer bottleneck; it cannot be contained in any loop L´ inner to L, since L´ 
cannot contain the head of L. The corollary now follows immediately from Theorems 5.2 and 5.3. 
 
5.8 Loop Trees and Communication Networks 
 
The theorems above might appear unsatisfactory, in that a closer connection between clustering 
trees and BGL trees might have been expected. There is a larger question, however, as to whether 
loop trees, when applied to communication networks, are useful at all. Loop trees arose originally 
out of our analysis of call graphs, in which a self-loop corresponds to ordinary recursion, and a 
more general loop corresponds to mutual recursion. They were quickly applied, also, to 
flowgraphs; and here a loop corresponds roughly, although not quite always syntactically, to a 
loop in the ordinary programming sense. Consider now a communication network, in which, as 
usual, we expect communication to proceed in both directions between any two vertices. What is 
the interpretation, in this context, of a loop in a loop tree? Fig. 5.5 indicates one of the difficulties 
here. This graph G gives simple two-way communication along a line, in either direction (note 
that it would be highly unlikely for a flowgraph to have this form). Suppose that the start node of 
G is u1; then G has a unique loop tree consisting of n–1 nested loops, each containing the vertices 

uk through un for some k, 1 ≤ k ≤ n–1. Thus loops are not necessarily obvious divisions of a 

communication network. 
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Fig. 5.5. Why loop trees make little sense for communication networks 
 

6 Wheels within Wheels 
 
6.1 Introduction 
 
In recent work [1] we introduce a decomposition of an arbitrary strongly connected graph G into 
subgraphs. Such a decomposition has an associated tree, which we call a loop tree, in which every 
node N, other than the root, represents a strongly connected subgraph H of G. Our work was 
motivated by the consideration of flowgraphs; if G is a flowgraph and N represents H as above, 
then H is either a single node, with no edges, or else it is, in a semantic sense, a loop in G. 
 
There is also a completely different way of decomposing a strongly connected graph. This was 
described by Luce [5] in a form which applies to some, but not all, such graphs. Luce’s work was 
later rediscovered by Knuth [6], who used still another technique to provide an extension of 
Luce’s decompositions to any strongly connected graph. Luce’s work was motivated by 
considering communication networks, and many of his concepts do not have obvious informal 
interpretations when applied to flowgraphs. However, from a purely formal point of view, both 
Luce’s decomposition and Knuth’s extension of it are very similar to ours. 
 
Using Knuth’s terminology, we may define a wheel, which is a strongly connected graph 
decomposed into strongly connected parts, that are then decomposed into others, and so on. 
Extending this terminology, we define a wheel tree to represent such a decomposition. In both 
wheel trees and loop trees, every node represents a strongly connected subgraph; if N and N´ 
represent respective subgraphs H and H´, and if N is the parent of N´, then H contains H´; while if 
N and N´, as above, have the same parent, then H and H´ are disjoint. 
 
The purpose of this section is threefold. We start by describing Luce’s work, using current 
terminology for graphs. We define wheel trees and associated concepts, and show the similarities 
and differences between wheel trees and loop trees. We then use Luce’s work to provide a 
sharpened form of Knuth’s decomposition. Finally, we relate this work to the further commentary 
on both [5] and [6] provided by Chaty and Chein [14]. 
 
Specifically, Knuth’s theorem implies that, in our terminology, every strongly connected graph 
has a wheel tree; but no information is provided as to its form. In section 6.13 below, however, we 
show, using one of Luce’s decomposition theorems, that such a tree may always be taken to have 
a particular form, which we call a chandelier. This has a special node X, such that every node in 
the chandelier has exactly one child if and only if it is a proper ancestor of X. 
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6.2 Loop Trees and Wheel Trees 
 
A brief description of our theory of loop trees was given in Section 1 above. We now compare this 
with the theorem presented in [6] according to which any strongly connected graph D that has any 
edges at all has a wheel decomposition. This means that D is composed of strongly connected 
graphs D1, D2, ..., Dn, for n ≥ 1, together with edges x1→y2, x2→y3, ..., xn–1→yn, xn→y1, 
where each xi and each yi is a node of Di. Suppose now that we set up a tree whose root is 
associated with D, and having n children, associated respectively with D1, D2, ..., Dn. Since the 
Di are all strongly connected, they may be decomposed further, and a tree, which we call a wheel 
tree (Definition 6.1), may be built up in this way. 
 
Two decomposition theorems are presented in [5], of which the second is relevant here. There are 
strong conditions on the graph to be decomposed, but the conclusion is also stronger, in that we 
have n ≥ 2 rather than n ≥ 1 in the above decomposition. Formal treatments of both Luce’s and 
Knuth’s work are given in section 6.11 below. 
 
6.3 Basic Definitions 
 
Any application of Luce’s work [5] must start with its terminology. Luce was concerned with 
oriented graphs, which, in modern terminology, are multigraphs; that is, there can be more than 
one edge between two given nodes. He considered a special case of multigraphs, which he calls 
networks, and which are, in fact, the same as (directed) graphs in the modern sense. Further 
notation used by Luce is also often not what is used today. 
 
Luce begins by defining oriented graphs, networks, subnetworks, complete subnetworks, q-chains 
and their products, and connected and disconnected networks. These definitions are compared 
with today’s terminology in Table 1. Most important, here, is Luce’s use of the term “connected,” 
which means, in current terminology, strongly connected. 
 
6.4 The Degree of a Graph 
 
We next pass to some of Luce’s further definitions. The first is that of the degree of a graph ([5], 
p. 703). A graph has degree 0 if it is not (strongly) connected. It has degree 1 if, first, of all, it does 
not have degree 0 (so that it is strongly connected), but it has an edge whose removal leaves a 
graph which is not strongly connected. 
 
Luce generalizes this to a graph of degree k, in which you have to remove k edges to get a graph 
which is not strongly connected. His approach now involves two decomposition theorems for 
graphs. The first of these reduces the study of all graphs to the study of graphs of degree 1; this is 
done through the concept of the sum of several graphs, which we take up in section 6.8 below. 
The second is a decomposition only for graphs of degree 1; we take this up in sections 6.11 and 
6.14 below. 
 
It will be necessary, in these later sections, to present examples of graphs of degrees 2 and 3. Fig. 
6.1 shows the double ring, a graph of degree 2; if we remove the two edges which lead outward 
from any node, the result is no longer strongly connected, since there are no paths leading from 
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that node. However, if we remove any single edge, the result is still strongly connected. Fig. 6.2 
shows the double cube, which, by similar logic, may be seen to be a graph of degree 3. 
 
6.5 Minimal and 1-Minimal Graphs 
 
A minimal  network (i. e., graph), in [5], is strongly connected and also 1-minimal, meaning that 
the removal of any edge would result in a graph which is not strongly connected. This definition 
appears to be motivated by an analysis of communication networks. Suppose that, in such a 
network G, there are three nodes, A, B, and C, with edges A→B, B→C, and A→C; then G is not 
minimal, in an informal sense. You can always eliminate the edge A→C from G, and obtain a 
smaller network which achieves the same effect by replacing any communication along A→C by 
the use of A→B and B→C. 
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Table 1. Comparison of Luce’s terminology with current terminology 
 

Luce’s terminology Current terminology Luce’s definition (pp. 701-702 of [5]) 
Network (Directed) graph “A network N...is a system composed of...a finite non-empty set of...nodes...and...a...subset of the 

set of all ordered pairs of nodes” (p. 701) 
Links Edges “The members of P...are called the links of N” (p. 701) 
Oriented graph Multigraph See first 6 lines, p. 701 
(ab) ab “...bracketed ordered pairs (ab), (ca), ... [will be used] to denote links” (p. 701) 
Initial node of (ab) a, in a→b “If (ab) is a link, the first node, a, will be called the initial node...” (p. 701) 
End node of (ab) b, in a→b “...and the second, b, the end node of the link” (p. 701) 
Subnetwork Subgraph (not necessarily 

induced) 
“A subnetwork N´ of a network N is a subset M´ of the nodes, M, of N, with P  ́taken to be some 
subset (not necessarily proper) of those links of N which are definable on M´” (p. 702) 

Complete subnet 
work 

Subgraph of N containing all 
nodes of N 

“If M´ = M, we shall say that the subnetwork is complete” (p. 702) 

Non-reflexive 
network 

Graph with no self-loops “We shall call a network non-reflexive if there are no links of the form (aa)” (p. 702) 

Arc Two-node or one-node cycle 
(not a single edge) 

“In case both...(ab) and (ba) are present in a network,...an arc ab exists between a and b, the arc 
consisting of this pair of links...A link of the form (aa) is always the arc aa” (p. 702) 

q-chain from a to b Simple path, of length q, from a 
to b 

“A...q-chain from a to b is a set of q links of the form (ac1), (c1c2), ..., (cq–2cq–1), (cq–1b), such 
that no node appears more than once, except in the case a = b where a appears twice” (p. 702) 

(ab, q) a→c1→c2→...→cq–1→b “Any q-chain from a to b will be denoted by (ab, q)” (p. 702) 

Product of two 
chains 

Concatenation of two paths “If c is a node included in a q-chain from a to b, then we may subdivide the chain into the 
‘product’ of two chains, one from a to c, and the other from c to b...” (p. 702) 

Circuit Cycle “An (oriented) circuit is a chain of the form (aa, q)” (p. 702) 
Connected Strongly connected “A network is connected if there exists a chain from each node to every other node” (p. 702) 
Disconnected Not strongly connected “A network which is not connected is disconnected” (p. 702) 
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Fig. 6.1. The double ring   Fig. 6.2. The double cube 
 

6.6 Uniform and 1-Uniform Graphs 
 
Luce’s motivation for defining uniform networks (that is, graphs) is to develop “a condition 
implying that there is an even distribution of connectedness throughout the network; roughly, that 
the degree of any connected subnetwork is not greater than that of the network itself” ([5], p. 703). 
A uniform  graph is one which is strongly connected and 1-uniform , meaning that every strongly 
connected subgraph is of degree 1. 
 
This is in contrast to the situation illustrated by the graph of Fig. 6.3. Here we have a strongly 
connected graph; however, if we delete the edge from A to B (or from B to A), the result is not 
strongly connected. Therefore, this graph is of degree 1, by the definition in section 4 above. 
However, if we eliminate the node A entirely, together with both of its edges, the result has degree 
2, as we also saw in section 4. Thus this graph is not 1-uniform, and therefore not uniform. It is 
also not minimal; indeed, you can remove four edges (B→E, E→D, D→C, and C→B) from the 
graph, producing a strongly connected graph. 
 
This example may be generalized. Whenever a graph G is not uniform, it has a subgraph G´ of 
degree at least 2. At least one edge X→Y may always be eliminated from G´, producing a strongly 
connected subgraph H´. This implies that there is a path π in H´ from X to Y. If you eliminate 
X→Y from G, the remaining graph, H, will still be strongly connected. In fact, for any nodes U 
and V in H, we may replace X→Y by π in any path from U to V in G that involves X→Y, pro-
ducing a path from U to V in H. This implies that a graph which is not uniform is not minimal; or, 
more simply, a minimal graph is always uniform ([5], p. 704). 
 

 
 

Fig. 6.3. Removing edges to produce a minimal graph 
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6.7 Descendants of a Graph 
 
Given a graph G which is strongly connected but not minimal, you can always eliminate at least 
one edge from it, and the result will still be strongly connected. Suppose now that you continue to 
eliminate edges, one by one, preserving strong connectivity as you go, until you reach a graph D 
for which you cannot do this any more. That is, you cannot eliminate any edge from D and still 
preserve strong connectivity, so that D is minimal, by the definition in section 6.5 above. 
 
Sometimes there is more than one way to do this. For example, in the graph of Fig. 6.3, we could, 
as noted in section 6 above, remove the edges B→E, E→D, D→C, and C→B to produce a 
strongly connected subgraph. We could also, however, have removed the edges B→C, C→D, 
D→E, and E→B, and the result would still be strongly connected. Note that we are removing the 
same number of edges in each case (four, here). 
 
There are other cases, however, in which you can remove different numbers of edges, in 
producing a minimal graph. Thus, in Fig. 6.4, we can eliminate one edge from G1 to produce G2; 
or we can eliminate two edges from G1 to produce G3. Note that both G2 and G3 are minimal; 
they are both strongly connected, but you cannot get a strongly connected graph by eliminating 
more edges from either one. 
 
We now consider minimal graphs obtained as above, by eliminating as many edges as possible. 
These are what Luce calls descendants of the original graph. In the first case above, we can 
produce a descendant by eliminating four edges, in either of two possible ways. In the second case 
above, G3 is a descendant of G1, while G2 is not, because it is produced from G1 by eliminating 
only one edge instead of two. 

 
 

Fig. 6.4. Another example 
 

6.8 Sums and Decompositions 
 
Looking again at the graph of Fig. 6.1, we can see that it is made up of two cycles, one going 
clockwise around the ring and the other going counterclockwise. This is a special case of what 
Luce refers to as the sum of two subgraphs. In general, a graph G is the sum of subgraphs G1, G2, 
..., Gk if every node of G is contained in all of the Gi but every edge of G is contained in exactly 
one of the Gi. 
 
Suppose now that the degree of G is 1, which implies that G is strongly connected. Let G1 be a 
descendant of G, as in the preceding section (here G1 = G if G is already minimal). Form a graph 
G2 out of all the nodes of G, together with exactly those nodes that were removed from G to form 
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G1. Then G is the sum, in the above sense, of G1 and G2. Here G1 is minimal (because it is a 
descendant of G), while G2 is not strongly connected, since otherwise (as Luce proves) G would 
have degree 2, not 1. 
 
Luce’s first decomposition theorem, which we mentioned in section 6.4 above, generalizes this to 
a graph of degree k > 1, which is expressed as the sum of k+1 subgraphs, all of which are 1-
minimal (see section 5 above). The first of these, G1, is always connected (and therefore 
minimal), while the last, Gk+1, is always disconnected. The remaining G2 through Gk may be 
either connected or disconnected, but their connected components are minimal. As we will see in 
section 6.14 below, our approach avoids this first decomposition theorem entirely, using only the 
second one, taken up in section 6.11 below. 
 
6.9 Trees, Arcs, and Undirected Graphs 
 
We now pass to trees, and what they mean for Luce. In the modern sense, Luce’s networks are 
directed graphs, but Luce’s trees are not directed trees. A directed tree, today, is a directed graph 
containing no cycles, not even undirected ones, as in Fig. 6.5. This is clearly not what Luce means 
by a tree, since he states (p. 707, lines 13-14) that “...a network which is a tree is minimal.” A 
minimal graph, however, is (strongly) connected, implying that it has at least one cycle, so it 
cannot be a directed tree in the above sense. 

 
A general dag (containing no directed cycles,  A directed tree (not even 
although it does contain an undirected cycle)  any undirected cycles) 

 
Fig. 6.5. Directed and undirected cycles 

 
To understand Luce’s notion of a tree, one has to consider another of his definitions (Table 1). An 
arc, for Luce, is not a single edge (as in [14], for example), but rather a pair of nodes, say U and 
V, with both edges U→V and V→U present in the graph. Suppose now that we have a (directed) 
graph in which every edge is part of an arc; then we can produce a corresponding undirected graph 
in which each arc is replaced by a single undirected edge. Luce calls this a graph, and says that, in 
this case, a network is a graph. When [5] was written, the term “graph,” in general, meant what we 
now call an undirected graph. 
 
Later, [5] refers to “the concept of a tree in graph theory,” meaning, therefore, the theory of 
undirected graphs. A tree, then, for Luce, is what is obtained by replacing every edge a-b, in an 
undirected tree, by the two edges a→b and b→a, as in Fig. 6.6. Now it makes sense that a network 
which is a tree is minimal. A tree, in this sense, is strongly connected, but the removal of any of its 
(single) links leaves a graph which is not strongly connected. If a→b is removed, there is no 
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longer a path from a to b, because such a path, followed by b→a, would have formed a cycle; and 
a tree has no cycles. 
 
6.10 L-Trees and Proper Descendants 
 
We will refer to trees, in the sense of section 6.9 above, as L-trees (L for Luce), in order to 
distinguish them from directed trees in the modern sense, such as decomposition trees. Note that a 
single node with no edges is acyclic, and therefore a tree, as an undirected graph. It is therefore 
also an L-tree, as a directed graph. We refer to such an L-tree as a trivial  L-tree. 
 
We define, in the obvious way, a proper descendant of G; that is, a descendant H of G such that 
H ≠ G. Luce introduces a lemma ([5], Lemma 3.1, p. 707), which says, restated in modern 
terminology, that a proper descendant of a graph cannot be an L-tree; this will be used in section 
6.13 below. We here do not repeat the proof of this lemma, although we note that an example has 
already been introduced, in Fig. 6.4 above. Here the graph G2 is an L-tree, as illustrated in Fig. 
6.7. As we noted in section 6.7 above, G2 is not a proper descendant of G1. 
 

 
 

Fig. 6.6. A directed tree, for Luce 
 

 
 

Fig. 6.7. An L-tree, obtained from an undirected tree 
 

6.11 Wheels 
 
We now take up the study of Luce’s second decomposition theorem. This theorem is seemingly 
restrictive, as it applies only to a graph which (a) contains no self-loops, (b) is minimal, and (c) is 
not an L-tree. More recently, Knuth [6], using a completely different method, proved that any 
strongly connected graph has a decomposition similar to, but more general than, that of Luce. In 
section 6.13 below, we will use Luce’s decomposition in order to prove a stronger version of 
Knuth’s decomposition. The following definitions are meant to be applicable to both of these 
decompositions. 
 
DEFINITION 6.1 . A (Knuth) wheel W is (defined recursively as) either a single node with no 
edges (in which case it is called trivial  and its wheel tree is a single node), or a graph consisting 
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of n wheels W1, W2, ..., Wn, where n ≥ 1, together with n edges x1→y2, x2→y3, ..., xn–1→yn, 

xn→y1, where each xi and each yi is a node of Wi, for 1 ≤ i ≤ n, in which case: 
 

a) the size of W is n, 
b) the thickness of W is the minimum of n and the thicknesses of all nontrivial Wi, 1 ≤ i ≤ 

n, and 
c) the wheel tree of W consists of a root node which, if W is non-trivial, has, as children, 

the root nodes of the wheel trees of W1, W2, ..., Wn. 
 
Every node in the wheel tree of W corresponds to a wheel somewhere in the recursively expressed 
definition of W. It should be clear that a wheel of thickness 2, for example, is one for which, not 
only is its size at least 2, but the sizes of all wheels corresponding, in this way, to all nodes in its 
wheel tree are also at least 2, with one of them being equal to 2. We now need three lemmas. 
 
LEMMA 6.1 . Every wheel is strongly connected. 
 
PROOF. Using the notation of Definition 6.1, let W be a non-trivial wheel, where by induction 
we may assume that W1, W2, ..., Wn are all strongly connected. Then, if X is in Wi and Y is in 
Wj, there is a path from X to xi (because Wi is strongly connected) to yi+1 (or y1 if i = n) to xi+1 
(or x1, because Wi+1, or W1, is strongly connected), and so on, and finally to Y. Knuth’s theorem 
now says that, conversely, every strongly connected graph is a wheel [6]. 
 
LEMMA 6.2 . Every wheel containing a self-loop has thickness 1. 
 
PROOF. Informally, we can see this because, at some point in the decomposition, the self-loop 
must be an edge like x1→y2 above; but x1 = y2 here, so that n = 1 and the thickness is 1. 
Formally, if W contains a self-loop, then W is non-trivial; if any of W1, W2, ..., Wn has thickness 
1, we are done. By inductive hypothesis, there are no self-loops in W1, W2, ..., Wn, so the self-

loop must be an edge like x1→y2 above. In that case, n = 1 and the thickness is 1, just as before. 
 
LEMMA 6.3 . A non-trivial L-tree has thickness 2. 
 
PROOF. Let T be an L-tree and let S be its associated undirected tree. Clearly S has a node U of 
degree 1 (otherwise it would contain a cycle); let V be the node adjacent to U in S, so that T 
contains both U→V and V→U. Let T´ be obtained by removing U, U→V, and V→U from T; then 
T´ is also an L-tree. We form T into a wheel of size 2 by taking W1 to be U by itself; W2 to be T´; 

x1→y2 to be U→V; and x2→y1 to be V→U. By induction, W2 is either trivial, or it has thickness 
2, while W1 is trivial. Since T has size 2, it therefore has thickness 2. 
 
6.12 Compound Circuits 
 
The inclusion of the notion of thickness in Definition 6.1 is intended to allow it also to apply to 
another of Luce’s definitions. A compound circuit is a wheel of thickness greater than 1. Luce 
explicitly specifies that a compound circuit has no self-loops; however, this follows anyway from 
Lemma 6.2. In order to state Luce’s theorem here more succinctly, we introduce another 
definition. 
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DEFINITION 6.2 . A generalized compound circuit is either a compound circuit or a single 
node with no edges. A generalized L-tree is the result of replacing every node in an L-tree by a 
generalized compound circuit, and every edge between nodes in the L-tree by an edge between 
nodes in the corresponding generalized compound circuits. 
 
LEMMA 6.4 . A generalized L-tree has thickness greater than 1, unless it is a single node with no 
edges. 
 
PROOF. The logic here is almost identical to that for ordinary L-trees. Let T be a generalized L-
tree, with underlying tree S. If S is a single node, then T is either a single node with no edges, or a 
single compound circuit, of thickness greater than 1. Otherwise, let U and V be as in Lemma 6.3, 
and let U´ and V´ be the generalized compound circuits associated, in T, with U and V 
respectively. There now exist edges u1→v2 and u2→v1, where u1 and u2 are in U´, while v1 and 

v2 are in V´. Let T´ be obtained by removing U´, u1→v2, and u2→v1 from T; then T´ is also a 

generalized L-tree. We form T into a wheel of size 2 by taking W1 to be U´; W2 to be T´; x1→y2 

to be u1→v2; and x2→y1 to be u2→v1. By induction, W2 has thickness greater than 1, unless it is 
trivial; and so does W1, because it is a generalized compound circuit. Since T has size 2, it 
therefore has thickness 2. 
 
Luce’s second decomposition theorem now says that a minimal graph with no self-loops, which is 
not an L-tree, is a generalized L-tree. This result is deeper than Knuth’s theorem, but it is also 
seemingly more restrictive. However, Luce’s theorem may be used in a proof of a generalization 
of Knuth’s theorem. Note that this theorem puts no restriction on the form of the wheel tree, 
whereas ours will put a strong restriction on it, as indicated by the following definition. 
 
DEFINITION 6.3 . A chandelier is a rooted tree T containing a node X such that any node in T 
has exactly one child if and only if it is a proper ancestor of X. All proper ancestors of X 
constitute the upper part of T, the remainder of T (including X) being its lower part . 
 
Fig. 6.8 shows a chandelier and the visual justification of its name. Note that X and every node 
below it has either no children, or at least two children, whereas every node above X has exactly 
one child. Mathematically, a chandelier could consist of just a lower part, or of just X and an 
upper part, or even of X by itself. The thickness of the lower part of a chandelier is always greater 
than 1, unless the lower part consists of X by itself. 
 
6.13 A Generalization of Knuth’s Theorem 
 
We are now ready for our main result on wheel trees. 
 
THEOREM 6.1. Any strongly connected graph G is a wheel whose wheel tree is a chandelier. 
 
PROOF. First we ask whether G has a self-loop. If so, we express G as a wheel with size 1, in 
which x1 = y1, and W1 is G with the self-loop removed. We denote W1, here, by G1, and 
continue removing all self-loops in this fashion, producing G2, G3, etc., until we arrive at a graph 
H = Gj with no self-loops. Every node in the wheel tree of G, from G down to H, has exactly one 
child, except for H. 
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Fig. 6.8. A chandelier 
 
At this point we ask if H is an L-tree. Suppose it is; then we apply Lemma 6.3, which shows that 
the wheel tree of H has thickness 2. Let X be the root of this wheel tree; then the wheel tree of G, 
with this X, satisfies the requirements of Definition 6.3, and we are done in this case. 
 
Now suppose that H is not an L-tree. If so, then, if it is minimal, we set K = H and proceed to the 
next paragraph. If H is not minimal, then let K be a descendant of H; note that, by Luce’s lemma 
of section 6.10 above, K is not an L-tree, since it is a proper descendant of H. Let z1, z2, ..., zk be 

the edges which are removed from H to produce K, where each zi is ai→bi for 1 ≤ i ≤ k. Let Hi be 
H with z1, z2, ..., zi removed, for 0 ≤ i ≤ k, so that H0 = H and Hk = K. For 1 ≤ i ≤ k, then, Hi is 

Hi–1 with zi (= ai→bi) removed; and we may express Hi–1 as a wheel of size 1, in which x1 = ai, 
y1 = bi, and W1 is Hi (that is, Hi–1 with zi removed). Every node in the wheel tree of G, from G 
down to K, has exactly one child, except for K. 
 
At this point K is a minimal graph, not an L-tree, and containing no self-loops, so that Luce’s 
second decomposition theorem applies. Accordingly, K is a generalized L-tree, and, by Lemma 
6.4, it has thickness greater than 1, unless it is a single node with no edges. Let X be the root of 
the wheel tree of K; then the wheel tree of G, with this X, satisfies the requirements of Definition 
6.3, as before, and we are done. 
 
6.14 Chandeliers and Luce’s Two Decompositions 
 
Luce presents two decompositions of graphs; but Theorem 6.1 uses only the second of these 
theorems. We will now explain why. Luce’s first decomposition is a way of reducing the study of 
graphs to the study of minimal graphs; any graph which is not minimal, and which might, indeed, 
have high degree, may be expressed as the sum of simpler graphs. 
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The double cube of Fig. 6.2 is a good example of this. If we were to apply Luce’s first 
decomposition theorem to this, we would find this graph G decomposed into G1 and G2, where 
G1 is further decomposed into H1 and H2. Here G, G1, and H1 are shown in Fig. 6.9. We omit the 
rest of the details, except to note that there is a decomposition tree for G, constructible in this way. 
However, this tree is not like our other decomposition trees because G2, an internal node in the 
tree, is not strongly connected, although it has children in the tree which do correspond to strongly 
connected subgraphs. 
 
In constructing a chandelier for the double cube G, however, a much simpler decomposition is 
used. The special node X, as in Definition 6.3, may now be taken to represent the graph H1, as in 
Fig. 6.9. Note that G has 24 edges, while H1 has only eight. Each of the 16 remaining edges, in 
turn, is taken as the single edge in a wheel of size 1, resulting in sixteen nodes at the upper part of 
the chandelier. The decomposition of H1 is then into a wheel of size 8, and each child of H1 in the 
chandelier is a single node. All this is illustrated in Fig. 6.10. 
 

 
 

Fig. 6.9. Constructing a chandelier for the double cube 
 

 
G1 = G ~ {1→→→→4}           G5 = G4 ~ {5→→→→1}           G9 = G8 ~ {1→→→→5}          G13 = G12 ~ {5→→→→6} 
G2 = G1 ~ {2→→→→1}         G6 = G5 ~ {6→→→→2}           G10 = G9 ~ {2→→→→3}         G14 = G13 ~ {6→→→→7} 
G3 = G2 ~ {3→→→→2}         G7 = G6 ~ {7→→→→6}           G11 = G10 ~ {3→→→→7}       G15 = G14 ~ {7→→→→8} 
G4 = G3 ~ {4→→→→3}         G8 = G7 ~ {8→→→→4}           G12 = G11 ~ {4→→→→8}       H1 = G15 ~ {8→→→→5} 

 
Fig. 6.10. The constructed chandelier 
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6.15 K-Rooted Trees and Related Concepts 
 
For wheels with thickness greater than 1, our wheel trees have been studied by Chaty and Chein 
[14], which calls them K-rooted trees (K for Knuth). Using the terminology of this paper: 
 

• a reducible graph is a wheel with size greater than 1; 
• a K-decomposition of a reducible graph is the specification of W1, W2, ..., Wn and the xi 

and the yi in the wheel; 

• a totally reducible graph is a wheel with thickness greater than 1; 
• a K-rooted tree is what we are calling a wheel tree (but only for totally reducible graphs); 
• the depth of a K-rooted tree is the maximum height of a wheel tree (when there is more 

than one wheel tree) for a totally reducible graph; 
• an optimum K-rooted tree is a wheel tree with maximum height; 
• the order of a compound circuit is the number of nodes in its wheel tree; 
• a circuitic  (or circuitus) extension of a node is the result of replacing the node by a circuit 

(that is, a cycle) and edges to the node by edges to somewhere in the circuit. 
 
Chaty and Chein now proceed to define a contractible elementary cycle C as one from which 
there is exactly one edge proceeding outward, and to which there is exactly one edge proceeding 
inward. Formally, the definition in [14] involves the quotient graph in which C is contracted to a 
point. (If the cycle is not contractible, there will be parallel edges in the quotient graph.) Chaty 
and Chein now define a sequence of graphs, each one obtained from the previous one by a 
circuitus extension, and show (using our notation) that a wheel has a wheel tree of thickness 
greater than 1 if and only if it can be derived from a single point using a sequence of circuitus 
extensions as above. 
 
6.16 Generalizations to Graphs of Higher Degree 
 
The notions of 1-minimal graphs, 1-uniform graphs, and descendants of a non-minimal graph are 
generalized by Luce [5] to graphs of degree greater than 1. In such a case, Luce speaks of k-
minimal graphs, k-uniform graphs, and k-descendants of a graph. 
 
A k-uniform graph is one in which every strongly connected subgraph has degree not greater than 
k. A graph of degree k which is not k-uniform can easily be produced by starting with some graph 
of degree k and attaching to it a graph of degree higher than k. 
 
A k-minimal  graph is one in which removal of any edge results in a subgraph of degree k–1. For 
example, a double ring, like that of Fig. 6.1 (but having any number of nodes), is 2-minimal. 
Removal of any edge U→V leaves a graph of degree 1; it is strongly connected, but removing the 
remaining edge that starts at U leaves a disconnected graph (with no paths starting at U). In the 
same way, the double cube of Fig. 6.2 is 3-minimal. Here removal of any edge U→V leaves a 
graph of degree 2, since removing the remaining two edges that start at U leaves a disconnected 
graph as before. 
 
For k ≥ 2, Luce proves that every k-minimal graph is k-uniform, and of degree k. This generalizes 
the fact that a minimal graph is uniform and of degree 1, although the precise statement of Luce’s 
lemma is not always true for k = 1. The problem is that a 1-minimal graph does not have to be 
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strongly connected, and indeed any graph which is not strongly connected is 1-minimal, although 
possibly of degree 0, not 1. 
 
The removal of edges from a graph G of degree 1 is now generalized in [5] to the removal of 
edges from a graph of degree k, producing a graph which is q-minimal for some q ≤ k. This is 
called a q-descendant of G; and Luce states (without providing counterexamples) that q-
descendants do not always exist for q > 1, although they do always exist for q = 1. 
 
6.17 Decompositions of Graphs of Higher Degree 
 
In [5], Luce also generalizes his first decomposition theorem to graphs of degree higher than 1. 
Let us consider a graph G of degree 2, since that case may be easily visualized. Here the 
decomposition is into three graphs, G1, G2, and G3, each of which contains all the nodes of G. 
The graph G1 is minimal, and therefore strongly connected; G2 is 1-minimal, but not necessarily 
strongly connected, and therefore not necessarily minimal. (In the generalization to degree k, it is 
still only G1 that must be strongly connected.) Also, G3 must be not strongly connected, and is 
therefore always 1-minimal. However, any strongly connected subgraph of G2 is minimal. 
Finally, G1 is a descendant of the sum of G1 and G2, which is in turn a 2-descendant of G. 
 
To illustrate this, consider the graph G of Fig. 6.11, which has degree 2; if we remove B→A and 
B→C, the result is not strongly connected, because there are no longer paths to anywhere from B. 
Here G is the sum of G1, G2, and G3, as in Fig. 6.12. Note that G3, here, is not strongly 
connected, because of the isolated nodes B and D. Also, G2, here, happens to be strongly 
connected, so that both G1 and G2, here, are minimal (and, in fact, interchangeable). 
 
For a general graph of degree k > 2, the decomposition is always into the sum of k+1 subgraphs, 
all of which are 1-minimal. The first of these, G1, is always connected (and therefore minimal), 
while the last, Gk+1, is always disconnected. The remaining G2 through Gk may be either 
connected or disconnected, but their connected components are minimal. Each sum G1+...+Gj is 
always a j-descendant (as at the end of section 6.16 above) of the sum G1+...+Gj+1. 
 

 
 

Fig. 6.11. Decompositions of graphs of higher degree 
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Fig. 6.12. The decomposed graph 
 

6.18 Decomposition Trees and Isolated Paths 
 
We now ask whether a graph, having been decomposed as above, may be decomposed further, 
producing a tree bearing certain similarities to a loop tree. This question is taken up in [5] as 
follows: “...the study of an arbitrary network has been reduced to the study of a collection of 1-
minimal networks. These...are either connected, and so minimal, or disconnected. But a 
disconnected network consists of isolated nodes, isolated chains, and connected pieces...the 
connected pieces are minimal. If the theorem is applied repeatedly to the connected pieces...it 
may, in the same sense, be reduced to isolated nodes, isolated chains, and minimal subnetworks.” 
 
Luce’s use of the term “isolated chains” (meaning, in modern terminology, isolated paths) is 
different from what is used today. An isolated node is one which is separated completely from all 
other nodes; in other words, there are no edges to or from an isolated node. Two paths today, 
therefore, would be considered isolated if they were separated completely from each other, 
meaning, in this case, that they had no nodes in common. However, a disconnected network (that 
is, a graph which is not strongly connected) does not necessarily consist of isolated nodes, 
connected pieces, and (in the above sense) isolated chains, as may be seen from the graph of Fig. 
6.13. Here the connected pieces are (induced by) {1, 2, 3} and {6, 7, 8}; but the remainder of the 
graph is (induced by) {2, 3, 4, 5, 6}, and this is not made up of paths having no node in common. 
Isolated chains, for Luce, then, are chains having no links (i. e., edges) in common, such as 
2→→→→4→→→→5→→→→6 and 3→→→→4 here. 
 
6.19 A Decomposition Tree Example 
 
We now give an example of a decomposition tree for the double cube G of Fig. 6.2. This is 3-
minimal, and therefore 3-uniform and of degree 3, as we saw in section 6.16 above. Here G has 24 
edges, of which we remove eight, producing a double ring on eight nodes, which we call G1; and 
we denote the remaining edges by G2. All this is shown in Fig. 6.14. 
 
We now use Luce’s Lemma 2.1 (p. 703 of [5]) which says that a graph of degree k, having m 
nodes, must have at least km edges. Here k is 2 and m is 8, so any graph of degree 2 on these 
nodes must have at least 16 edges. We use this to show that G1 is a 2-descendant of G. On one 
hand, we have eliminated eight edges from G to produce the double ring G1, which is 2-minimal 
(and therefore 2-uniform and of degree 2, as we saw in section 6.16 above). On the other hand, if 
we had eliminated more than eight edges, the resulting graph would have fewer than 16 edges and 
therefore, as we saw above, could not have degree 2. This shows that 8 is the maximum number of 
edges we can remove, and still leave a graph of degree 2. 
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Fig. 6.13. Decompositions of disconnected networks 
 

 
 

Fig. 6.14. Decomposition of a 3-minimal graph 
 

The graph G2 is not strongly connected, but it is made up of four strongly connected pieces, which 
we denote by K1, K2, K3, and K4, as in Fig. 6.15. We now obtain a 1-descendant of the graph G1, 
which is a single ring that we denote by H1. The eight edges which we remove from G1 to get H1 
will be referred to as H2, as in Fig. 6.16. By an argument similar to the one above, we show that 
H1 is a 1-descendant of G1 here. By eliminating eight edges from G1, we obtain H1, which is 1-
minimal; eliminating any edge from H1 produces a graph which is not strongly connected. On the 
other hand, if we were to eliminate more than eight edges from G1, we would obtain a graph with 
fewer than eight edges, but still having eight nodes, so that it could not be strongly connected. 
 
The decomposition tree for G is therefore that of Fig. 6.17. The main difference between this tree 
and a loop tree is concerned with G2, which, as we saw above, is not strongly connected. In a loop 
tree, every node, other than the root, represents a loop, which must be a strongly connected 
subgraph. 
 

 
 

Fig. 6.15. Decomposition of a 3-minimal graph (continued) 
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Fig. 6.16. Decomposition of a 3-minimal graph (further continued) 
 

 
 

Fig. 6.17. Decomposition of a 3-minimal graph (concluded) 
 

6.20 L-Trees and Proper Descendants 
 
We define, in the obvious way, a proper descendant of G; that is, a descendant H of G such that 
H ≠ G. The following was stated, but not proved, in section 6.19 above. It was proved in [5]; we 

prove it again here, using modern terminology. 
 
LEMMA  (Lemma 3.1, p. 707 of [5]). A proper descendant of a strongly connected graph G 
cannot be an L-tree. 
 
PROOF. Suppose that H is an L-tree which is a proper descendant of G, obtained by removing 
edges e1, ..., ek from G, in that order. Let H´ be H with the additional edge ek = U→V, so that H´ 
is not minimal. We show that H is a proper descendant of H´, as well as of G. Suppose the 
contrary; since H is minimal, there must be another minimal graph H", obtained by removing at 
least two edges from H´. Then H" would be obtained from G by removing e1, ..., ek–1 (to produce 
H´), followed by at least two more edges; that is, at least k+1 edges in all. This would contradict 
our assumption that H is a proper descendant of G, obtained by removing as many edges of G as 
possible, with what remains still being strongly connected. 
 
We obtain a contradiction by showing that such an H" exists after all. Since H is strongly 
connected, there is a path π in H from V to U. We first show that the length of π is at least 2. 
Otherwise, it would have length 1, so it would be a single edge V→U. However, since H is an L-
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tree and it contains V→U, it also contains U→V. That would contradict the assumption that U→V 
is a new edge, added to H to produce H´. 
 
We now obtain H" by removing π from H´. Since π has length at least 2, we are removing at least 
two edges from H´, as noted above. It remains to show that H" is strongly connected. Let X and Y 
be in H"; we need to construct a path in H" from X to Y. Since H´ is strongly connected, and also 
contains X and Y, there is a path π´ in H´ from X to Y. If this path does not involve any edge in π, 
we are done. 
 
Now let π be V1→V2→...→Vk, where V1 = V and Vk = U, and suppose that π´ involves some 

edge Vi→Vi+1, where 1 ≤ i < k. Since H is an L-tree, every edge in H is part of what Luce calls 

an arc (see section 6.9); therefore H also contains the path Vk→Vk–1→...→V1. We now replace 

Vi→Vi+1 in π´ by the path Vi→Vi–1→...→V1→Vk→Vk–1→...→Vi+1, which is in H" (note that 

V1→Vk is in H", since V1 = V and Vk = U). This completes the proof. 
 
6.21 The Degree of a Flowgraph 
 
In this and the next three sections, we take up the question of whether Luce’s work in [5] 
motivated by a study of communication networks, has much relevance to flowgraphs, which 
motivated our work described in [1]. The answer appears to be no, but the details may be of some 
mathematical interest. 
 
Luce states in [5] that his first decomposition theorem reduces the study of all graphs to that of 
graphs of degree 1. However, for flowgraphs this would not appear to be of great importance, 
because almost all flowgraphs have degree either 0 or 1 anyway. In fact, we have the following: 
Any flowgraph containing an assignment statement is of degree either 0 or 1. 
 
To prove this, first assume that the flowgraph G is not of degree 0, so that it is strongly connected. 
Consider an assignment statement S in G, and let T be the next statement after S; note that T is 
always executed immediately following S. Now remove the link in G from S to T, producing a 
graph G´. There are no paths in G´ from S to any other node, because all such paths would have to 
go through the link that was just removed. Hence G´ is not strongly connected, and G is thus of 
degree 1. 
 
It is possible, although of doubtful utility, to construct a flowgraph of degree 2. For example, we 
could do this for the double ring of Fig. 6.1; every statement is now an if-statement, passing 
control by one position either one or the other way around the ring, depending on the result of a 
condition. One could include assignment statements as side effects of the if-statements, in order to 
do useful work. 
 
Mathematically, we could even construct a flowgraph of any degree higher than 2, by using a case 
or switch statement at every node. For degree 3, each node is now one vertex of a cube, which has 
three adjoining vertices, to any of which control may pass depending on which case is applicable, 
as in the double cube of Fig. 6.2. For degree n > 3, each node is one vertex of a hypercube in n-
dimensional space, having n adjoining vertices. 
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6.22 Minimal Flowgraphs 
 
In section 6.21 above we mentioned that a flowgraph might not be minimal for a good reason. 
Having said this, it is conceivably still of interest to determine which flowgraphs G are minimal 
and which are not. The answer appears a bit strange, even for flowgraphs of structured programs 
without the go-to. Let us assume that G is strongly connected, and that we build up G by replacing 
parts of it by more complex parts. If G is minimal, and we replace L1: S; L2: within it by some 
other construction Z, then the result is minimal in each of the cases (1) through (6) below: 
 

1) If Z is L1: S1; L3: S2; L2:. Here we had an old edge, L1→L2, which does not remain; 
and there are now two new edges, namely L1→L3 and L3→L2, and the removal of 
either of these leaves the graph not strongly connected. 

2) If Z is an if -statement with else, of the form L1: if  C then L3: S1 else L4: S2; L2:, where 
S1 and S2 are single nodes. There are four new edges, namely L1→L3, L3→L2, 
L1→L4, and L4→L2, and the removal of any of these leaves the graph not strongly 
connected. 

3) If Z is L1: while (C) {L3: S1;} L2:, where S1 is a single node. We had an old edge, 
L1→L2, which remains, and there are now two new edges, namely L1→L3 and L3→L1; 
and the removal of any of these leaves the graph not strongly connected. 

4) If Z is a while (true) construction containing a single break. Removing the break leaves 
the graph not strongly connected, since there is no way to get to the statement following 
the while loop. 

5) If Z is L1: for  (C1; C2; C3) {S1;} L2:, where S1 is a single node. This is equivalent to an 
assignment followed by a while statement, and rules (1) and (3) above apply. 

6) If Z is a case or switch statement in which every case is non-null, including the default 
case. Removing the link from the start of the statement to any case, or from any case to 
the end of Z, leaves the graph not strongly connected. 

However, the result is not minimal in each of the cases (7) through (12) below: 
7) If Z is an if -statement without else, of the form L1: if  C then L3: S1; L2:, even if S1 is 

not a single node. We had an old edge, L1→L2, which remains; and there are two new 
edges, namely L1→L3 and L3→L2. The removal of L1→L2 now leaves a graph which 
is strongly connected. 

8) If Z is L1: do S; L3: while (C); L2:, even if S is not a single node. We had an old edge, 
L1→L2, which does not remain, and there are now three new edges, namely L1→L3, 
L3→L1, and L3→L2; and the removal of L3→L1 leaves a graph which is still strongly 
connected. 

9) If Z is a while (true) construction containing more than one break. Removing any break 
now leaves the graph strongly connected, since we can always get to the statement 
following the while loop by means of another break. 

10) If Z is a while (C) construction containing break, one or more times, where C is 
anything other than true. Removing any break now leaves the graph strongly connected, 
since we can still get to the statement following the while loop through the normal while 
logic when C is false. 

11) If Z is a conditional continue. Removing the edge which does the continue leaves the 
graph strongly connected. 

12) If Z is a case or switch statement in which some case is null, and is represented by an 
edge from the start of the case to the statement following Z. Removal of that link leaves 
the graph strongly connected. 



 
 
 
 
 
 
 

British Journal of Mathematics & Computer Science 4(5), 612-666, 2014 
 
 

663 
 

 
6.23 Null Node Expansions and Minimal Graphs 
 
In considering whether a flowgraph G may be replaced by a flowgraph H which is equivalent to 
G, there is always the question of what equivalence means. Clearly H might provide exactly the 
same computations that G does, and, at the same time, H might be less efficient than G, with 
respect to time and/or space requirements. It is therefore useful to define a class of equivalent 
graphs which do not present this problem. 
 
Null node expansions were introduced in section 5.7 above. There are many possible reasons to 
introduce null nodes. Here we will merely be concerned with one of these, related to [5]: a non-
minimal graph always has a null node expansion which is minimal. Suppose we have an edge, 
L0→L1, the removal of which leaves the graph still strongly connected. We can always replace 
L0→L1 by two edges, L0→L2 and L2→L1, where L2 is a null node, as in section 5.7. Removing 
either of these edges leaves the graph not strongly connected; and if we do this for every such 
edge, we will have a minimal graph. (In example (12) of the preceding section, this would be 
minimal if the null case had its own node.). 
 
6.24 Wheel Trees and Loop Trees 
 
An individual loop, within a loop tree, may be derived from a general acyclic graph with 
loopbacks, by replacing some of its elements by inner loops. An individual wheel, within a wheel 
tree, may be derived from a simple cycle by replacing some of its elements by inner wheels. This 
greater simplicity of wheel trees, however, comes at a cost; the height of a wheel tree is often 
greater than the height of the corresponding loop tree. We will now illustrate this with an example. 
Consider the following program: 
 
 (A) s0; 
 (B) do { 
    switch (expr) { 
 (C1)     case 1: while (cond1) s1; break; 
 (C2)     case 2: while (cond2) s2; break; 
      . . . 
 (Ck)     case k: while (condk) sk; 
    } 
 (E) } while (cond) 
 (F) f; 
 
The flowgraph of this program is given in Fig. 6.18. Consider the outer loop here, that is, the 
entire graph except for the nodes A and F. A loop tree for that graph consists of the do loop, 
containing k while loops, all at the same level. The height of this loop tree, therefore, is 2. We 
now prove that any wheel tree for this graph has height at least k+1. If k = 1, the wheel tree also 
has height 2 (= k+1); B, C1, and E form the outer wheel, while C1 and D1 form the inner wheel. 
 
If k > 1, then let W be a representation of this graph as a wheel, as in section 6.11, containing 
inner wheels W1, W2, ..., Wn. Let W1 be the inner wheel that contains Dk. There are four cases, 
only three of which are actually possible: 
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1) W1 consists of Dk by itself. In that case, as we can see from Fig. 6.18, x1→y2 must be 

Dk→Ck, while xn→y1 must be Ck→Dk. Therefore y2 = xn and so n = 2, with W2 being 
the remainder of the graph. Otherwise, W1 must contain Ck, since Ck is the only node 
with an edge either to or from Dk. 

2) W1 consists of Dk and Ck by themselves. In that case, again from Fig. 6.18, x1→y2 must 

be Ck→E, while xn→y1 must be B→Ck. Let W2 be the inner wheel that contains E. 
Since W2 is strongly connected, it also contains B; but B = xn, so that again n = 2 and 
W2 is the remainder of the graph. In either of these cases, W2 is strongly connected; also, 
any wheel tree of W2 must have height at least (n–1)+1 = n, by induction, so any wheel 
tree for W must have height at least n+1. 

 
In the remaining two cases, W1 contains Dk, Ck, and either B or E, since these are the only nodes 
with edges to or from Ck. If W1 contains E, then, since W1 is strongly connected, it also contains 
B; so, in any case, W1 contains B. 
 

3) W1 contains all Di except for some Dj, where j ≠ k. Here W2 contains Dj, and W2 does 
not contain B, so that W2 must be either Dj by itself, or Dj and Cj by themselves. This 
then reduces to case (1) or (2) above, with j taking the place of k. 

 

 
 

Fig. 6.18. The height of a wheel tree compared to that of a loop tree 
 

4) There exist two Di, say Da and Db, which are not contained in W1; but W1 still contains 
Dk, Ck, and B. We now show that this case is impossible. Clearly Da and Db cannot be 
in the same inner wheel, since that wheel would have to contain B; but B is actually in 
W1. Therefore, Da and Db are contained in distinct inner wheels, and there must now be 
a path around W, from Da to Db (or from Db to Da), which does not go through W1. 
Since W1 contains B, this path cannot go through B. This is impossible, however, 
because every path from Da to Db, or from Db to Da, in this graph must in fact go 
through B. This completes the proof. 
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A consequence of this is that wheel trees do not, in general, represent the looping depth of a graph, 
even though, like loop trees, they constitute a decomposition of strongly connected graphs into a 
tree structure, with a strongly connected subgraph at every level. 
 

7 Conclusions 
 
We have compared three methods of repeated decomposition of a directed graph, using strong 
components, namely wheel trees, clustering trees, and loop trees. We have shown that loop trees 
are a better source of understanding of the properties of flowgraphs than are clustering trees or 
wheel trees. We have also shown that there are well-known concepts in the theory of directed 
graphs that can be better understood by considering their loop trees. These include path 
expressions, edge-disjoint spanning trees, and feedback vertices. Our contention is that loop trees 
are the first important 21st-century development in the theory of directed graphs, particularly 
flowgraphs, and that anyone interested in this theory should learn about them. 
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