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Abstract 

 
In this paper, a new kind of distribution has suggested with the concept of exponentiate. The reliability 

analysis including survival function, hazard rate function, reverse hazard rate function and mills ratio has 

been studied here. Its quantile function and order statistics are also included. Parameters of the distribution 

are estimated by the method of Maximum Likelihood estimation method along with Fisher information 

matrix and confidence intervals have also been given. The application has been discussed with the 30 years 

temperature data of Silchar city, Assam, India. The goodness of fit of the proposed distribution has been 

compared with Frechet distribution and as a result, for all 12 months, the proposed distribution fits better than 

the Frechet distribution. 
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1 Introduction 

 
Probabilistic extreme value theory deals with the stochastic behaviour of the maximum and the minimum of 

random variables. Extreme value distributions are the limiting distributions for the minimum or the maximum of 

a large collection of random observations from the same arbitrary distribution. Extreme value distributions are 

usually considered into three families as type-I (Gumbel-type distribution), type-II (Frechet-type distribution) 

and type-III (Weibull-type distribution). In this paper we will discuss about type-II extreme value distribution 

i.e. Frechet distribution. Mourice Rene Frechet [1] introduced Frechet distribution which is defined by its 

Probability Density Function (PDF) and Cumulative Distribution Function (CDF) as 
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here 0  is a shape parameter 0   is a scale parameter. 

 

Ramos P.L. et al. [2] published a full review about Frechet distribution and they have discussed different 

estimation techniques. Abd-Elfattah and Omima [3] introduced a generalization technique in Frechet 

distribution. Krishna et al. [4] discussed Marshall-Olkin Frechet distribution as a new generalization of Frechet 

distribution.  

 

A random variable X  is said to have an exponentiated distribution if its cdf is given by 

 

     xFXG  ; 0, x ,                                                                                                    (1.3) 

 

and the pdf of X  is given by 

 

      xfxFxg
1




  .                                                                                                              (1.4) 

 

Gupta et al. [5] first used this technique and introduced exponentiated exponential distribution. Later Gupta and 

Kundu [6] studied some properties of this distribution. Hassan et al. [7] discussed exponentiated Lomax 

distribution and its properties.  Nasir et al. [8] obtained the exponentiated Burr XII power series distribution 

with properties and its applications. Pal et al. (2006) studied the exponentiated Weibull family as an extension of 

Weibull distribution. Rather and Subramanian [9] discussed the exponentiated Mukharjee-Islam distribution 

which shows more flexibility than the classical distribution. The same authors [10] published an exponentiated 

Garima distribution and discussed its application with engineering science data.  
 

Many authors have been working on exponentiated Frechet distribution also by using various exponentiated 

method. Nadarajah and Kotz [11] introduced an exponentiated Frechet distribution as a generalization of 

standard Frechet distribution. Mansour  et al. [12] discussed the properties and application of Kumaraswami 

Exponentiated Frechet distribution. Badr M.M. [13] introduced Beta generalized Exponentiated Frechet 

distribution and discussed its properties with application. Generally, Frechet distribution fits in meteorological 

data. So, it is expected and hoped that the Exponentiated Frechet distribution (EFD) will also be a better model 

in this field [14-21]. 
 

2 Exponentiated Frechet Distribution (EFD) 
 

On substituting (1.2) and (1.1) in (1.3) and (1.4) we will get the cdf and pdf of Exponentiated Frechet 

distribution as 
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Where   and   are shape parameter and   is the scale parameter. Further 
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  and 
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This shows that EFD is a proper density function. 

 

Graphs of the pdf and the cdf of EFD are shown in Fig. 1 and Fig. 2 for varying values of the parameters

 and, . The R-software is used for designing the graphs.  

  

 
 

 
 

Fig. 1. Graphs of the pdf of EFD for varying values of parameters 
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Fig. 2. Graphs of the cdf of  EFD  for varying values of parameters 
 

3 Statistical Properties 

 
In this section, statistical properties including asymptotic behaviour, survival function, hazard function, reverse 

hazard rate, mills ratio and quintile function of EFD has been studied. 
 

3.1 Asymptotic Behaviour 
 

The asymptotic behaviour of EFD for 0x  and x  are 
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These results confirm that the proposed distribution has a mode. 

 

3.2 Reliability Properties 

 
The survival function (or the reliability function) is the probability that a subject survives longer than the 

expected time. The survival function of the EFD is given by 
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The hazard function (also known as the hazard rate, instantaneous failure rate or force of mortality) is the 

probability to measure the instant death rate of a subject. Suppose X  be a continuous random variable with pdf 

 xg  and cdf  xG . The hazard rate function of X  is defined as  
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The corresponding  xh  of EFD can be obtained as 
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The reverse hazard rate is the ratio between the probability density function and its distribution function. The 

reverse hazard function of EFD is given by 

 

   1  xxhr  
 

The mills ratio is the ratio between the survival function and the pdf of a distribution. The mills ratio of EFD is  
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Graphs of the survival function and the hazard function of EFD are shown in fig.3 and fig.4 for varying values 

of the parameters  and, . 

 

3.4 Quantile Function 

 
The quantile function is defined as 

 

   uGuQ 1
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Therefore, the corresponding quantile function for EFD can be expressed as 
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Let U  has the uniform  1,0U  distribution. Taking 5.0u , the median of EFD can be obtained as 
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Thus, the formula for generating random samples from EFD for simulating random variable X  is given by 
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Fig. 3. Graphs of survival function of EFD for varying values of parameters 
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Fig. 4. Graphs of Hazard rate function of EFD for varying values of parameters 

 

4 Statistical Properties 

 
In this section, we will discuss about the various structural properties of proposed Exponentiated Frechet 

Distribution (EFD). 

 

4.1 Moments 

 

Using (2.2), the 
thr  moment about origin of EFD is given by 
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By putting 4,3,2,1r  in (4.1.1), we can get the first four moments about origin as 

 

  























1
1

1
1XE       
























2
1

12

2

2XE  

  























3
1

13

3

3XE      























4
1

14

4

4XE  

 

From above we can observed that 
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As a consequence, we can settled the recurrence relation of raw moments for EFD as 
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The first four central moment of EFD is given by 
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The corresponding variance and other related properties are given below 
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4.2 Incomplete Moments 

 

Let us suppose that X is a random variable follows EFD, then the r
th

 incomplete moment denoted as  rxI ; can 

be defined as follows 
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The r
th

 incomplete moment of EFD is given as 
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4.3 Harmonic Mean 

 
Let us suppose that X is a random variable follows EFD, harmonic mean denoted as ..MH can be defined as 

follows 

 

 dxxg
xX

EMH 












0

11
..

 

 
 



 

 
 

 

Rahman and Roy; AJPAS, 15(4): 211-225, 2021; Article no.AJPAS.79373 
 

 

 
220 

 

The Harmonic mean of the proposed model is 
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4.4 Moment Generating Function and Related 
 

If X  has a EFD, then the moment Generating Function is defined as 
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The moment generating function of EFD is given as 
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The characteristic function of EFD is given by 
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 and the Cumulant Generating Function is 
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5 Order Statistics of EFD 

 

Let nxxx ,...,, 21 be the random samples from EFD   ,, . The pdf of 
thi order statistics is given by 
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The pdf of 
thi  order statistics  iX  of EFD is given by 
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The pdf of the first order statistic  1X  can be expressed as 
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The pdf of the highest order statistic  nX  can be expressed as   
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6 Maximum Likelihood Estimation and Fisher Information Matrix 

 

Let nxxx ,...,, 21  be the random samples of size n  from a EFD   ,, . The log-likelihood function can be 

expressed as 
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The maximum likelihood estimate  (MLE)   ˆ,ˆ,ˆ   of   ,,  of   EFD are the solutions of the following 

log- likelihood equations 
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These log-likelihood equation  can’t be solved analytically and required statistical software with iterative 

numerical techniques. These equations can be solved using R-software. 

 

The 3×3 observed information matrix of  EFD can be presented as, 
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The inverse of the information matrix results in the well-known variance-covariance matrix.  The 3×3 

approximate Fisher information matrix corresponding to the above observed information matrix is given by 
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The solution of the Fisher information matrix will yield asymptotic variance and covariance of the ML 

estimators for   ˆ,ˆ,ˆ . The approximate 100(1-α)% confidence intervals for   ,,  respectively are 

nnn






















222

ˆandˆ,ˆ  , where  is the upper 100α
th

 percentile of the standard 

normal distribution. 

 

7 Application of EFD 

 
In this study, monthly mean (maximum) temperature series of Silchar city, Assam, India from January 1988-

December 2018 (30 years) which  is collected from India Meteorological Department, Pune, India has been 

analyzed. For the application purpose, the datasets from January to December has been considered.  

 

In order to compare the Exponentiated Frechet Distribution(EFD) with Frechet distribution (FD), we consider 

the criteria like Bayesian information criterion (BIC), Akaike Information Criterion (AIC), Akaike Information 

Criterion Corrected (AICC) and  Llog2 . The better distribution corresponds to lesser values of AIC, BIC, 

AICC and Llog2 . The formulae for calculating AIC, BIC and AICC are as follows: 

 

,log22 LKAIC  ,log2log LnkBIC 
)1(

)1(2






kn

kk
AICAICC  

 

Where k is the number of parameters, n is the sample size and -2 logL is the maximized value of log likelihood 

function. The ML estimates of the parameters of the considered distributions along with values of 

BICAICCAICL and,,log2  for the datasets are presented in Table 1. 

Table 1. ML estimates of the parameters 

 
Month Distribution ML estimates Llog2  AIC  AICC  BIC  

      

January EFD 0.175749 

( 0.0335)  

0.100000 

( 0.0456)     

53.72741 

( 9.7130)     

123.5671  129.5671 130.4559 133.8690 

FD 0.998638   

 (0.1793)  

25.21178 

(4.5312) 

- 262.2624  266.2624 266.6910 269.1304 

February FFD 0.257402    

 (0.0499)  

0.100000 

(0.0385)     

83.44501 

(15.323) 

110.2884  116.2884 117.1773 120.5903 

FD 0.998114    

 (0.1792)  

27.62806 

(4.9668) 

- 268.0018  272.0018 272.4304 274.8698 

March EFD 0.183198        

 (0.0352)  

0.100000 

(0.0449) 

60.61852 

(10.953) 

130.4332  136.4332 137.3221 140.7352 

FD 0.998723    

 (0.1793)  

30.70221 

(5.5178) 

- 274.4669  278.4669 278.8955 281.3349 

April EFD 0.270026    

 (0.0533)  

0.100000 

( 0.0382)     

73.17402 

(13.341) 

128.7770  134.7770 135.6659 139.0789 
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Month Distribution ML estimates Llog2  AIC  AICC  BIC  
      

FD 0.999069    

 (0.1794)  

31.32754 

(5.6292) 

- 275.6763  279.6763 280.1048 282.5442 

May EFD 0.103025     

 (0.0191)  

0.100000 

( 0.0578)     

92.12879 

(16.643) 

113.3843  119.3843 120.2732 123.6863 

FD 0.999187    

 (0.1795)  

31.6614 

( 5.6889) 

- 276.3187  280.3187 280.7473 283.1867 

June EFD 0.304659     

 (0.0611)  

0.100000 

( 0.0365)     

71.56617 

(13.068) 

137.6811  143.6811 144.5700 147.9831 

FD 0.999528    

 (0.1795)  

32.2824 

(5.7995) 

- 277.4787  281.4787 281.9073 284.3467 

July EFD 0.177185     

 (0.0338)  

0.100000 

(0.0455)     

71.96994 

(13.018) 

124.2184  130.2184 131.1073 134.5204 

FD 0.999469   

 (0.1796)  

32.59439 

( 5.8557) 

- 278.0826  282.0826 282.5111 284.9505 

August EFD 0.249177     

 (0.0494)  

0.100000 

( 0.0398)     

54.90938 

( 9.9318) 

146.3962  152.3962 153.2851 156.6981 

FD 0.99962    

 (0.1795)  

32.8331 

( 5.8981) 

- 278.5161  282.5161 282.9447 285.3841 

September EFD 0.277857     

 (0.0555)  

0.100000 

(0.0381)     

62.24918 

(11.302) 

142.3221  148.3221 149.2110 152.6240 

FD 0.999573    

 (0.1796)  

32.60451 

(5.8572) 

- 278.0889  282.0889 282.5175 284.9569 

October EFD 0.253127    

 (0.0498)  

0.100000 

( 0.0393)     

65.35098 

(11.863) 

134.1400  140.1400 141.0289 144.4419 

FD 0.999728   

 (0.1796)  

31.77596 

( 5.7079) 

- 276.4742  280.4742 280.9028 283.3422 

November EFD 0.17098     

 (0.0326)  

0.100000 

 (0.0462)    

58.3169 

(10.531) 

129.9273  135.9273 136.8162 140.2292 

FD 0.999683  

 (0.1795)  

29.61339 

( 5.3195) 

- 272.1095  276.1095 276.5381 278.9775 

December EFD 0.184774     

 (0.0356)  

0.100000 

( 0.0449)     

43.17822 

( 7.7877) 

140.5016  146.5016 147.3905 150.8036 

FD 0.998876  

 (0.1794)  

26.57575 

( 4.7758) 

- 265.4995  269.4995 269.9280 272.3674 

 

It is obvious from above table, that EFD provides much better fit than Frechet distribution for data relating to 

minimum temperature and hence the proposed distribution can be considered an important distribution for 

modelling mean maximum temperature data.  

 

8 Conclusion 

 
In this paper Exponentiated Frechet distribution (EFD) has been proposed. Its statistical properties including 

behaviour of pdf, cdf  and hazard rate function have been discussed. The distribution of the order statistics has 

been given. The maximum likelihood estimation for estimating parameters of the proposed distribution has been 

discussed. The applications of the proposed distribution for modelling data relating to real life datasets like 

temperature have been explained and the goodness of fit of the EFD and Frechet distribution has been presented 

for ready comparison.   
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