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Abstract 
Path integral formulation based on the canonical method is discussed. The Hamilton Jacobi function for regular 
Lagrangian is obtained using separation of variables method. This function is used to quantize regular systems 
using path integral method. The path integral is obtained as integration over the canonical phase space 
coordinates. One illustrative example is considered to demonstrate the application of our formalism. 
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1. Introduction 
The path integral is an expression for the propagator in terms of an integral over an infinite dimensional space of 
paths in configuration space. Many important applications of path integral have been found in statistical physics, 
in the theory of phase transitions, super fluidity, super conductivity, quantum optics, and plasma physics.  
The path integral concept was introduced for the first time by (Wiener, 1921) as a method to solve problems in 
the theory of diffusion and Brownian motion. This integral which is now also called the Wiener integral has 
played a central role in the further development of the subject of path integration. 
It was reinvented in a different form by (Feynman, 1948), for the reformulation of quantum mechanics. The 
Feynman approach was inspired by Dirac's paper on the role of the Lagrangian and the least- action principle in 
quantum mechanics (Dirac, 1933). 
The quantization of Lagrangian systems was discussed in most references of classical mechanics (Razavy, 2005). 
Moreover, the quantization of constrained systems has been studied using the WKB approximation by (Rabei et 
al., 2002, Rabei & Guler 1992; Nawafleh, 2002, Nawafleh et al., 2004; Hasan et al., 2004). Recently the 
quantization of dissipative systems has been studied using the WKB approximation by (Jarab'ah et al., 2013). 
The path integral quantization of constrained Lagrangian systems has been investigated by (Muslih & Guler, 
1997; Rabei, 2000; Muslih, 2001, 2002); also the path integral quantization of dissipative systems has been 
investigated by (Hasan, 2014). 
The purpose of the present work is to construct the Hamilton Jacobi function for regular Lagrangian using 
separation of variables technique in order to quantize the regular systems using path integral method. 
This paper is organized as follows. In section 2, Hamilton Jacobi formulation and path integral quantization were 
discussed. In section 3, illustrative example is examined. In section 4, the work closes with some concluding 
remarks. 
2. Hamilton Jacobi Formulation and Path Integral Quantization 
The Lagrangian formulation of classical system requires that, the system is formulated by the generalized 
coordinates iq  and velocities iq , according to that, we can write the Lagrangian as a function of these 
general coordinates (regular Lagrangian) ),,( tqqLL  = , and the corresponding Euler Lagrange equation is 
given by (Thornton, 2004). 
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   LqpH −=   (2) 
where, the momentum can be obtained from 
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As a result, the Hamiltonian is constructed in the system, and one can write the Hamilton Jacobi equation like 
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 The momentum now is  
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It is known that in standard formulation the Hamilton Jacobi problem focuses on finding ),( tqS , which 
satisfies equation(4) and one can achieve that by using the method of separation of variables, by assuming 

tqwtqS ααα −= ),(),,( , (Goldstein,1980), where α is a constant, and ),( αqw  is time independent and 
called Hamilton's characteristic  function, it follows that 
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In the canonical method the action function and the equations of motion are written as total differential equations 
as follows  
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Where  
),( tqSZ =  is the Hamilton Jacobi function, which is obtained in terms of the canonical coordinates.  

The path integral representation may be written as 
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3. Illustrative Example 
Our formalism can be illustrated by discussing the following example: 
Consider a particle of mass m moves vertically under the influence of gravity, without frictional forces (Jarab'ah, 
2013). The Lagrangian is given by  

 
mgyymL −= 2

2
1    (12) 

The canonical Hamiltonian is 

  LypH −=   (13) 
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and the canonical momentum can be calculated using 

 
ym

y
LP 

 =

∂
∂=   (14) 

Then, 
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Thus, the canonical Hamiltonian can be written as the following form  
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The corresponding Hamiltonian Jacobi equation reads  
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The solution of the Hamiltonian Jacobi equation can be constructed as 
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Then, 
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Using equation (6), the function )(tf represents the canonical momentum, so that 
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Taking the first time derivative of equation (18) this yields 
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Inserting equation (20) and equation (21) into equation (17) we obtain 
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Matching power of y, we get 

 )(tfymgy ′=−   (23) 

After integration 
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Choose  0=f  , equation (24) becomes 
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Then, 
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Similarly choose 0=R , equation (28) becomes 
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Making use of equation (25) and (29), the Hamilton Jacobi function takes the following form
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Remembering that 

 mgtp −=   (31) 
So that, equation (30) gives 
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The final form of the Hamiltonian function is  

 pcySZ )( +==   (33) 
Now we come to the quantization of our system using path integral representation. 
Using equation (11) the path integral for this example is  
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The path integral representation can be written as 
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4. Conclusion 
The path integral formulation of regular systems was studied within the framework of Hamilton Jacobi equation. 
The Hamiltonian treatment of regular systems gives the Hamilton Jacobi equation, which leads to obtain the 
action function S using the technique of separation of variables. Then the path integral is obtained directly as an 
integration over the canonical phase space coordinates iq  and iq . An illustrative example was examined. 
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