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Abstract
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1 Introduction

The following inequality is called Hermite-Hadamard inequlity

f(a+b>< L} f(a)de < L@+ S0) (1.1)

2 “b—-a
where f: I CR — R is a convex function and a,b € I with a < b.

The following inequality also is called as Hermite-Hadamard inequlity for fractional integrals.

Let f : [a,b] — R be a positive convex function with 0 < a < b and f € L{a,b]

() < geth s + g @) < L9HI0 (12)

with o > 0.

The inequality (1.1) was first discovered by Hermite in 1881 in the Journal Mathesis. This inequality
was known as Hermite-Hadamard inequlity, because this inequality was found by Mitrinovic Hermite
and Hadamard’ note in Mathesis in 1974.

For several recent results concerning inequality (1.1), (1.2), see ([1]-[27]) where further references
are listed.

Definition 1.1. [9] Let f: I C R — R where a,b € I and ¢ € [0, 1]. The convex function is defined
as

flta+ (1= 1)) < tf(a) + (1 — ) (b). (1.3)

Definition 1.2. [11] Let s € (0,1]. A function f: I C Ry = [0,00) — R is said to be s—convex in
the second sense if

flta+ (1 =1)b) <t°f(a) + (1 — )" f(b), (1.4)
holds for all a,b € I and t € [0, 1].

Tung and Yildirim in [27] introduced the following definition as follows:

Definition 1.3. A function f:I C R — R is said to belong to the class of MT (I) if it is non-negative
and for all z,y € I and ¢ € (0, 1) satisfies the inequality;

Vit 1—¢
f(tﬂ:-i—(l—t)y)ﬁﬁf(x)—l— Vi

Definition 1.4. [6] Let ¢ : (0,1) — (0,00) be a measurable function. We say that the function
f:1—1]0,00) is a ¢—convex function on the interval I if z,y € I we have

fle+ (1 =0)y) <t () f(z)+ A -t)e (0 —1)f(y).

f ).

Remark 1.1. According to definition 4 for the special choose of ¢ we can obtain following;
If we take ¢(t) = 1, we obtain classical convex.

If we take @(t) = t°7', we obtain s—convex.

If we take ¢(t) = 1 we obtain MT —convex.

2V/tvI =t
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Definition 1.5. [10] Let f : [a,b] C R — R. The quasi-convexity is defined as
flte+ (1 =t)y) <max{f(z),f(y)}.

Now, we give some necessary definitions of fractional calculus theory which are used further in this
paper.

Definition 1.6. [20] Let f € L[a,b]. The Riemann-Liouville integrals J& f and J;_ f of order
a > 0 with a > 0 are defined by

To f(x) = ﬁr (@ — 0 f(t)dt, z>a (1.5)
and .
T f(z) = ﬁ (t — o)L f(t)dt, = < b, (1.6)

respectively. Here, I' (@) is the Gamma function and J_ f(z) = J,_ f(z) = f(z).
Samko et al. in [20] used following definitions as follows:
Definition 1.7. The Euler Beta function is defined as follows:
B(z,y) =o t" P (A —t)Y""dt, z,y > 0.
The incomplate beta function is defined as follows:
B(a,z,y) =4t " (1 —1)Y " "dt, 2,y >0, 0<a<1.
Recently, in a series of research publications, Diaz et al. ([3],[4],[5]) have introduced k -gamma and

k -beta functions and proved a number of their properties.

1k w1
Ti(z) = lim % (1.7)
(Z)n,x = H?:_OI (z+7k), k > 0is the Pochhammer k -symbols for factorial function. It has been shown
that the Mellin transform of the exponential function e™ % is the k -gamma function, explicitly given
by
Tk(z) = /00 tm_le%dt. (1.8)
Clearly, T'(z) = limj_1 Ty (2), Tk (z) = k¥ Fk(%; and Tk (z + k) = 2Tk ().

Definition 1.8. [4] The k-Beta function is defined the following formula

1 (!
By (z,y) = E/ tffl(l—t)%fldt, z,y, k > 0.
0

Remark 1.2. The following identity, connection the I'y, By function, is also given in [4]

Tr(z)Tx(y)
Bi(z,y) = ————=*, Re(xz) >0, Re > 0.
k(2 y) Tz + 1) (z) )
k -gamma also leads to another interesting direction, k -fractional integral defined by

BU@) = g [ @080 (19)

Remark 1.3. [23] When k — 1, it then reduces to the classical Riemann-Liouville fractional integral

@) = g [ @0 e (1.10)

(a
Note that, I f exists in Cy if f € Co, where Cp be the class of all functions which are continuous
and integrable on the interval (0, 00).
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2 Main Results

Now, we give a useful lemma that will be used later.
Lemma 2.1. Let f: I C R — R be a twice differentiable function on I° such that f” € L{a,b),
where a,b € I with a <b. Then for all x € [a,b], A € [0,1] and ¢ > 0 we have:

—a %2 a & 1"
Iy (), 2;a,b) :%foltag—&-l))\—tk)f (tz + (1 — t)a) dt

) Ft2? o o
where e ot (D A—1) 7+ 1= by dr,
Iy (av,/\7 %;a,b)

(- {(z—w%ﬂb—z)%} £(z)+ A {(m—w%f(a)ﬂb—w%f(b)]

b—a b—a

gy =) | =B | ) B [ f ) £ ).
Proof. Integrating by parts and changing the variable, for z # a we get
[t [(% +1)A— t%] "z + (1—t)a)dt
= [+ A-1£9 + B0 1013 7 () + A/ (@)

_ %f%tl) J7w—a) ¥t f (u) du (2.1)

8
|
2
—
H
5
>Rl

(b :1;) k+2 Ja( Ve F (u) du (2.2)

=[(g+1)A-1] L ’+Ebl)2[<1—x>f<m>+Af<a>]

DT (@), T2 0).
) & +2 +2

Multiplying both sides of (2.1) and (2.2) by (l?bal:) and (be)a) respectively, and adding the

resulting we obtain;

%folt((%Jrl))\—t%) f(tr+ (1 —t)a)dt

F OB (g + ) A= 1F) £ (e + (- ) de

+1 +1
+1) [(b Do) +e-a) (a)}

(b—a)

@y a4
— (1= (2+1)) {(H) L } Fr@) + A (

=) (g 1) |tbmema b ] ) - DD [ () 4 aE 1 0).

=9
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Theorem 2.2. Let ¢ : (0,1) — (0,00) be a measurable function. Assume also that f : I C
[0, co) = R be a twice differentiable function on the interior I° of an interval I and f"” € L]a,b],
where a,b € I° with a < b. If |f"|? is ¢—convex on [a,b] for some fized ¢ > 1, then we get the
following inequality for k-fractional integrals

|15 (2, A, .1, 050,b)|
_1 1
“(2,2) %{Az NG (@) + Az ($,0,8,9) |7 (a)]*} 7 (2.3)

+gbj%+ {A2 (2 A6 @) 1 @)+ As (5,0 t,0) |17 (b)ﬂﬂ

for any x =ta+ (1 —¢t)b,t €[0,1],X € [0,1], and ¢ > 0, where

14+ 3
Q> 1) & +1 «
A A) kl((k %i+)2 - (g +1) 3,
A2 &Nt :folt T LAt ) te () dt,
/\ = [ t((E+)A=t&) (1 —t)p(1—1t)dt

Corollary 2.3. In Theorem 1, if we choose ¢ (t) = 1, we get the following inequality
|If (1:,>\, %;a, b){

(st o)

: (@*al);’““ il +;)(§i§)2‘((‘;+1) J If" ()]

+® ((z;ri)zzwzak - %A(g%;j;l;\))uﬁ + a(%az 22 (a+2l§](€a+3k) |f" (a)]
g | (e )

: (a((z;ri)zz)l% - %((??(;ri)Sz))H% " a(%(;; 2 (a+2k?lza+3k)> - (b)|}] |

s—

Corollary 2.4. In Theorem 1, if we choose ¢ (t) = L we obtain the following inequality:

|If (m7)‘7 %7t7 <P>a7b)|

Q=

_1
<A (2 N) [ E=E )9 A, (208) 4 7 (a)]7 As (2, 08))

1
= B (@) A (2, 08) + 7 (0)]7 As (£,A,8)} 5
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where
(st2)k (s+2)k
(g BN gy
P\E s+2 o+ ks+ k2 o+ ks+ k2

As (g0 =G+ (((E+D)N = 25+1) =8 ((2+1)))

a+2,s+1)

(1= ((E+)N " a+25+1) = (F+)A (1= ((+1) N 25+1).

Theorem 2.5. Let ¢ : (0,1) — (0,00) be a measurable function. Assume also that f : I C
[0, 00) = R be a twice differentiable function on the interior I° of an interval and f" € L[a,b],
where a,b € I° with a < b. If |f’|* is po—convex on [a,b] for some fixed ¢ > 1 with % + é =1, then
we get the following inequality for k—fractional integrals

|If (m7)\7 ot 5 a, b)

Q=

< B () [ {15 @1 41 @) J v 0t (2.0

a2
BB (1 @+ 1 ) f e ) ae ]
for any x € [a,b], A € [0,1] and ¢ > 0, wherezF} is the hypergeometric function defined by

1
2F) (a,b,0,2) = m%} P11 — 1 (1 — ) gt

for 0 <b<cand |z] <1, and

+p+Zp

B(%,\,p) :M{r(lw)r(%) a3l (1,1+p,2+p+ 1%%1)

=
+6 (1+p,—1ﬂ’#) —ﬂ(A71+p,—%)}.

k k

Corollary 2.6. In Theorem 2 if we choose ¢ (t) = 1, then we get the following inequality which
holds for any x € [a,b], A € [0,1] and a > 0;

I (2,7, 2,1, 050,) | g(fol)t((%—kl))\—t%)‘pdt)%

1 1
o0t [ (@ @7 | emn B [ (el o) |
x b—a 2 + b—a 2 :

In Theorem 2 if we take o (t) = t*~', then we can obtain the following inequality:

|If (;r7)\,%,t,<p;a7b)| < (fol ’t((%—&-l))\—t%) pdt)%

1 1
o« | @=a2t? [ @[+ @]) | @ 4 (o)t (" @+ ®]") | @
(F+1)o-e #TL (F+1)o-e gE '

From the definition of quasi-convex, we can obtain the following theorems for k—fractional integrals.




Yildirim et al.; BJIMCS, 16(6), 1-11, 2016; Article no.BJMCS.26309

Theorem 2.7. Let f: I C R — R be a twice differentiable function on I° and f" € L [a,b], where
a,b € I° witha < b. If |f"|* is quasi-convez on [a,b] for some fized ¢ > 1, then we get the following

inequality for k—fractional integrals with x € [a,b], A € [0,1] and § >0

[If (z,\, £5a,b)| < D (2 A){%(maxﬂf” N1 (@)|*})

Q=

O a7 @I 1 01D

where .
D R 1) [
« at2k 2 VIS AS T
D (E’)\) - ( ) )
aq1)(e42)r-2 i
) P <A<

Proof. By property of the modulus, Lemma 1 and power-mean inequality we get

r—a +2
1 (@0 g50.0)] < (580 (N

1

dt)lfﬁ

1
"tz + (1 -1t )|th)°’

(3 +1)A- o

< (fot](g+1)a—1?

[
(b—z) kT2

1 o a 1_%
s (e (2 + ) A% )

x(folt

Since |f”'|? is quasi-convex on [a, b] we get
1
Jot

<D (5, A) max{[f" ()", [f" (a)|"},

(24 1) X—t%|[f7 (tz + (1 — t)b)|" dt)a.

(2 +1)A—t*

1 (ta + (1= Da)|* dt

And similarly we get

ot
< D (3, X) max{|f" (@)[", 1" ()|},

(2 +1)A—t*

|f" (tx + (1 —t)b)|* dt

where we use the fact that

D(2,0) =[t|(g+1)A—t%|dt
(& 4 1) fLEFDNS tdt—f()[(%“m%t%*ldt
0<A< =
= — (% +1))\f[1(%+1) & tdt+f o 1)k tetldt '
(& 1) N[ tdt — [ 8 de iy <A<
S S P
) (%+12)((%%++22)A—2 <A<t

(2.5)
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This completes the proof. O

Corollary 2.8. In Theorem 3, if we take ¢ = 1, then we obtain the following inequality

1y e i) < (10 )

%max{lf”(x)\ " @)+ (i max [ @)L O

(F+1)@ L0

(2 +1)A—t*

Corollary 2.9. In Theorem 8, if choose x = “T*'b and k = 1, we can obtain corollary 2.2 in [10].

Corollary 2.10. If we choose x = %’b and k =1 in Theorem 3, we can obtain the corollary 2.3,

2.4, 2.5 in [10], respectively for A = %, A=0, =1

Theorem 2.11. Let f: I C R — R be a twice differentiable function on I° and f"” € L|a,b], where
a,b € I° with a < b. If |f"|? is quasi-convex on [a,b] for some fived q > 1, then we can obtain the
following inequality for k-fractional integrals with x € [a,b], A € [0,1] and F >0

11 (A g50,8)] < DF (3.00) | (580 (max (|7 (552)|". 1" @1*}) ¥

F+1)(b—a)
(2.6)
(b—z) % +? NT 1
e max {7 (51 01 7|
where p = q%l,
k _
PatprR A=0
pa+p+k
(L ﬁ(k(pjl),“l)
D(FAp) =
aa—alPtT ok e
4 Emad 2&317]; ] oFy (Sh=he 1 p 4oy kmadskA) g < )\ < % L
[(atiy R k(p+1)
a « k
= ﬂ((aﬂc))\’ o ’p"'l) T <Al

2F is Hypergeometric function.

Proof. By property of the modulus, Lemma 1 and using the Holder inequality we get

’If T, A 55 @ )|

Tr—a #+2 o o
< 7((%1;(’;7&) Sl (e + 1) A= t% |t + (1 — t)a)| dt

—x &2 [e% £
+W Jot (4 1) X=t% [ (tw + (1 - t)b)| dt

a |P

(2+1)A—t%]"d )%(fo\f”t+(l—t))|th)%

(z— a)k* P
= a)(fot

a

(%+1)A—tz )% (fo If"(tz+ (1 - t)a )|th)%

(b—az)* +? ( 1p
Flenea (o !
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Since |f”'|? is quasi-convex on [a, b] we get

/1 |f//(t$ +(1- t)a)|q dt < max{
0

n(a
(%

+
o>
S~—

1 q
[ 15w+ - onffar < maxts (50| o))
0
and »
D(2\p) = [It|(2+1)A—tF| dt
S elE ey A=0
& p1)a]a »
JAGEEAE [(g+1)A—¢2]"a
+ e [tf = (g4 1)0] | 0<a<
(g% : 0<AS £y
1 « alP 1
Lot [(g+1)A—1t%]"at e <A<l
This completes the proof. O
Corollary 2.12. If we choose x = GTH’ in Theorem 4, we get
}If (x,)\,%;a,bﬂ
QP NT (o) Tt . 1
< (o (g w0 a— k[ ar) " o {max {77 (452)[* 17" @]"})
1
+ (max {| £ (=2) |, 17" ®)I"}) 7}
Corollary 2.13. If we choose = %% and k = 1 in Theorem 4, we can obtain the corollary 2.7,

2
2.9, 2.10 in [10], respectively for A = %, A=0,A=1.

3 Conclusion
In the present paper, we construct some new inequalities of the Simpson-like and the Hadamard-like

type for functions whose second derivatives are p-convex and quasi-convex via the integral equality
which is given in this work.
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